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ABSTRACT
In this work, we leverage the Uber movement dataset for the Los
Angeles (LA) area where partial TAZ to TAZ (Traffic Analysis Zone)
trip time data is available, to predict travel time patterns on the
full TAZ to TAZ network. We first create a TAZ-TAZ network
based on nearest neighbors and propose a model that allows us to
complete the (O −D) (Origin-Destination) travel time matrix, using
optimization methods such as non-negative least squares. We apply
these algorithms to several communities in the TAZ-TAZ network
and present insights in the form of completed (O −D)matrices and
associated temporal trends. We qualify the error performance and
scalability of our flows. We conclude by pointing out the directions
in our ongoing work to improve the quality and scale of travel time
estimation.
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1 INTRODUCTION
Data-driven mobility modeling and prediction are important as-
pects of modern urban planning. Instead of making predictions at
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the street-level, metropolitan areas are divided into a number of
small geographical units called Traffic Analysis Zones (TAZ) and
modeling and prediction tasks are done at the TAZ-level. Each of
the TAZs are characterized by factors such as the total population,
type of population, employment etc. Specifically, with respect to
travel forecasting, the two major areas of research are demand mod-
eling and travel time estimation [2]. Demand modeling involves
generation of accurate statistics of number of trips from origin
TAZs to various destination TAZs in the form of an (O −D) demand
matrix. Similarly travel time estimation also involves prediction of
travel times for trips given a pair of origin and destination TAZs,
also leading to an (O − D) travel time matrix.

When we consider existing research on travel time estimation,
modeling of interstate links has received disproportionate atten-
tion in the transportation research community primarily due to
the available of large amounts of data from freeway sensors. While
being equally important, the same is not true when it comes to
arterial modeling where the coverage is limited due to cost issues
with installation of large number of probe sensors and associated in-
frastructure. Under these circumstances, significant insights can be
gained with datasets such as the Uber Movement data at a fraction
of the cost. Uber datasets [23] provide anonymized, aggregated, and
coarse-grained origin-destination (O − D) travel times at the TAZ
level for a multitude of metropolitan areas around the world. While
these datasets can be coarse-grained, they do allow for coverage
over large areas and are available for multiple metropolitan areas
allowing for generalizability.

Our work is concerned with filling this gap in the arterial travel
time estimation. We consider a hierarchical approach to arterial
travel time estimation where in we first analyze the incomplete
Uber data at the TAZ level and in the second phase, we consider the
major road segments that connect the TAZs under consideration.
The work presented in this paper describes our research on the first
stage, namely the analytics at the TAZ level. For this purpose, we
first create a TAZ-TAZ graph and leverage various graph analytical
and optimization flows to find the travel times along the edges
of this abstract TAZ-TAZ graph. This allows us to complete the
travel time (O − D) matrix at the TAZ level and examine the same
for different times of the day and for different densely connected
clusters of TAZs with varying data sparsity. We then examine the
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temporal correlations of travel times along contiguous TAZ-TAZ
paths to serve as a high-level validation of the travel time estimates.
We also examine the accuracy and scaling issues with our approach,

The paper is organized as follows. Section 2 describes the related
work in the area of graph analytics and machine learning / optimiza-
tion as related to road networks. Section 3 is related to the network
preparation task under which we describe the Uber Movement data
that is used in this work (Section 3.1), the construction of the LA
area road network and the TAZ-TAZ network (Section 3.2), the
comparison in basic statistics between the two networks (Section
3.3), and the communities in the TAZ-TAZ network (Section 3.4). In
the subsequent section (Section 4), we describe the forward model
(Section 4.1) and the optimization methodology (Section 4.2) uti-
lized in this work. Section 5 presents our principal experimental
results. We first present the results related to convergence and scal-
ing in Section 5.1, followed by the results related to the travel time
(O −D)matrix completion and temporal correlations in Section 5.2.
We conclude the paper with a note on future work in Section 6.

2 RELATEDWORK
There is a rich history of using graph analytical measures and
machine-learning models in urban traffic modeling. These fall into
two major categories. The first set of approaches use graph repre-
sentations of road networks, employ different weighting schemes
and use traditional graph analytical measures. The second set of
approaches involve a graph-based fabric upon which traffic dy-
namics is imposed and variety of machine learning models are
proposed and optimization methods are employed to estimate the
model parameters. The detailed survey presented in [24] provides
an overview on a number of these methods.

In a recent work, the authors in [22] use graph analytics on
networks with three different weighting schemes to perform statis-
tical characterization of the Beijing road network. Several research
works consider betweenness centrality to be an important metric
when applied to road networks since it is argued to be a direct
predictor of important links in urban transport. Given a graph, be-
tweenness centrality [10] of an edge is the fraction of how many
shortest paths pass through that edge with respect to the total num-
ber of shortest paths. It has been shown that betweenness centrality
correlates highly with the traffic flow count on the road network
[9, 14, 19]. In real world, not all paths in a road network are equally
travelled and travel pattern changes during different times of the
day based on work and residential areas. The authors in [20] made
use of these observations and defined an augmented betweenness
centrality where shortest paths are weighted according to the traf-
fic demand model based on census / traffic analysis zones (TAZ).
The authors showed that the augmented betweenness centrality
correlates better with the traffic flows than the other centrality
measures. The authors in [8] employ graph analytics in the form
of novel centrality measures to derive insights into the traffic flow
patters in Singapore. The work presented in [17] use graph-based
models to understand the urban road traffic patterns while utilizing
heterogeneous datasets. In another interesting approach, the au-
thors in [11] utilize a grid-based architecture and cellular automata
for modeling arterial traffic while being computationally efficient.

The authors in [15] employ a deep learning approach, specifi-
cally a diffusion convolutional recurrent neural network to predict
the freeway traffic counts in the short term on LA and the Bay area
data. The work presented in [7] also uses a deep learning approach
in the form of a combination of convolutional neural networks and
recurrent neural networks with long short term memory units. This
architecture is utilized for short-term traffic count forecasting at
349 locations in the Beijing road network. In a recent report [21],
and publication [26], the authors address the issue of arterial travel
times from probe data that uses Bluetooth and GPS sensors as well
as propose novel methods for validation. The authors in [12], use a
Coupled Hidden Markov Model (CHMM) to model the evolution
of the traffic states and leverages the Expectation Maximization
(EM) algorithm for model parameter estimation. They apply these
methods to a sparse taxi-fleet data for the San Francisco Bay area
road network. The authors in another publication [13], employ a dy-
namic bayesian network framework to learn the arterial dynamics
using the same taxi-fleet dataset. Our approach is broadly based on
the model and optimization approach developed in a recent work
[3]. In this work the authors use shortest-path routing in a road
network and a convex-relaxation based formulation to solve for the
travel time.

3 NETWORK PREPARATION
In this section we discuss the details of the Uber movement data
for the LA city area, LA metropolitan area road network and the
equivalent TAZ-TAZ network and present some analytics on the
LA city area road network and the TAZ-TAZ network derived from
the Uber movement data for the LA city area.

3.1 The Uber Movement Data
Uber has released a trove of aggregated and anonymized data on trip
time and average speed statistics for a large number of cities around
the world where Uber operates [23]. Since gathering transportation
data is an expensive and cumbersome process, leveraging the Uber
data is expected to provide researchers and city planners conduct
quick but fairly detailed analyses of the various aspects of vehicle
mobility in urban settings. In this work, we mainly focus on the trip
times data published by Uber. This data is available for a number of
metropolitan areas and it provides statistics for trip times between
two TAZs or census tracts along with the hour of the day and day of
the week data. Further. in terms of the statistic used, our focus for
this work is the arithmetic mean [3]. The formulation can handle
geometric mean with minimal changes.

3.2 The LA city area road network and the
TAZ-TAZ network

Before we delve into the coarse TAZ-TAZ network which is the
main focus of this work, we provide some details on the graph
representation of the full physical road network for the LA city
area. The source for this network data is Open Street Maps [18],
accessed via the python-based OSMNX package [6].

Next we construct the TAZ-TAZ network for the LA city area.
Each TAZ is defined by set of polygons and each polygon is rep-
resented by a list of points in the lat-long coordinate system. The
entire data is available as part of the Uber movement data in the
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GeoJSON format. We then compute the centroids of these TAZs
and then compute the all-pairs euclidean distance. For each TAZ,
we then choose the nearest k TAZ centers to connect to, in order
to prepare the network. There are other methods to construct the
network. We could look for common polygon edges to connect
the TAZs or use a radius value around a TAZ center to connect
all TAZs within that radius. The first method is computationally
expensive and can have some issues with very small errors in the
co-ordinate values which can cause the algorithm to not identify
many edges. The second method can sometimes not add any edges
to large TAZs for a small radius value or too many edges to small
TAZs for a larger radius value, Hence our method of utilizing k
nearest neighbors addresses both the issues. We use k = 5 in this
work.

3.3 Comparison of the LA road network and
the TAZ-TAZ network

Before we move to the travel time estimation tasks, we briefly com-
pare the basic network statistics of the of the two different graphs.
Table 1 lists the comparison in terms of the basic network stats and
finally Figure 1 shows the degree distributions in the form of the
complementary cumulative distribution functions (CCDF). It’s clear
from the comparison that while the degree-related properties show
similarities, the clustering coefficient shows a marked difference,
The TAZ-TAZ network which is at a higher-level of abstraction
shows a very good community structure as we see in Section 3.4 and
this is responsible for the high clustering coefficient. The clustering
coefficient of the road network is within the bounds of the cluster-
ing coefficient values derived from a large-scale network analysis
of 27,000 US urban road networks [5] with more than 19,000 US
cities and towns.

Network Road network TAZ network

Nodes 50296 2205
Links 138038 6464

Average degree 5.5 5.9
Min. Degree 2 5
Max Degree 12 10
Clust. Coeff. 0.036 0.42

Table 1: Comparison of the basic graph statistics between
the LA road network and the constructed coarse TAZ-TAZ
network.

3.4 Communities in the TAZ-TAZ network
Next we employ community detection on the LA area TAZ-TAZ
network to identify closely connected TAZ groups. While this does
reveal patterns in the TAZ network, our main motivation is to
use community detection and the resultant clusters to expedite the
solution to the optimization problem. This becomes apparent during
the discussions on scalability presented in Section 5.1. Communities
or clusters in a graph are groups of nodes such that they are densely
connected within themselves with sparse interconnections between

Figure 1: Comparing the degree distributions of the LA road
network and the constructed TAZ-TAZ network.

them.We use the popular Louvain algorithm [4] as part of the Gephi
graph visualization package [1] to find the communities in the LA
area TAZ-TAZ network. Figure 2 shows a visualization of these
communities along with the two communities selected for detailed
analyses in both network form and spatial overlay. The first of the
selected communities (C1) has 91 TAZ nodes and 253 TAZ-TAZ
edges whereas the second community (C2) had 96 nodes and 516
edges. Not only did the two communities differ from the perspective
of the average degree of the nodes (or the graph density metric),
the amount of data available for these two communities differed
by a lot, allowing us compare the performance of the optimization
algorithm for an average case and a more extreme case.C2 is nearly
twice as dense as C1 and has 3X more data available.

4 THE GRAPH-BASED MODEL AND THE
OPTIMIZATION METHODOLOGY

In this section we first propose a forward model for the travel time
prediction and then show how the parameters of the model are
estimated by means of an optimizer.

4.1 The Forward Model
Our forward model is based on a simple weighted shortest-path
routing [3, 16, 25] with modifications to account for the fact that we
are working with the TAZ network. We first convert the undirected
TAZ-TAZ network to a directed TAZ-TAZ network to account
for the asymmetry in the travel times between two TAZs with
respect to the direction. We also weight these edges initially with
the Euclidean distance between the corresponding TAZ centers.
We then route the path between a given pair of TAZs to be the
weighted shortest path between them through the TAZ-TAZ graph.
We also introduce slack variables, one per TAZ that models the
average amount of time spent within each TAZ. Thus we express
the average total transit time (Ttr ) between two TAZs i and j as
follows.

Ttr (i, j) = T
w (i) +

∑
(k ,l )∈P

Ttr (k, l) +T
w (j) (1)

In Equation 1,Tw (i) andTw (j) denote the average time spent within
the TAZs i and j whereas Ttr (k, l) denotes the average travel time
across an edge in the TAZ-TAZ network and P denotes the set of
all edges that form the shortest path between the TAZs i and j.



SCC ’19, September 10–12, 2019, Portland, OR, USA Sathanur et al.

(a)

(b)

Figure 2: The top figure shows the network visualization
of the TAZ-TAZ graph along with the two communities se-
lected for further analysiswhile the bottomfigure shows the
spatial TAZ overlay with the two communities from the top
figure, shaded.

Thus our model has variables that denote the travel time within
each of the n TAZs andm travel times for each of the edges in the
TAZ-TAZ network, giving us a total of (m + n) model parameters
that are non-negative that need to be estimated.

4.2 The Optimization Process
Assuming that for a specific time of the day, we have l pairs of
TAZ-TAZ travel time (out of a possible n(n − 1) pairs) from the
Uber Movement data, and assuming that the origin and destination
TAZs are not the same, for each (O − D) pair, upon computation
of the (weighted) shortest path from O to D, we can write one
equation that is similar to Equation 1. Thus we have a system of l
equations with (m + n) unknowns. Typically l >> (m + n), giving

us an overdetermined system. The solution is therefore obtained by
minimizing the mean-squared error under the constraint that the
unknown coefficients which indeed are the travel time variables
are non-zero. This is illustrated by Equation 2.

Tt r = argmint | |S .t − tt t | |2 ; t ≥ 0 (2)

Ttr denotes the vector of the various travel times as depicted in
Equation 1, S denotes the matrix of shortest paths and the origin and
destination nodes as required by Equation 1 and finally tt t denotes
the TAZ-TAZ travel times for each of the ‘l ’ (O − D) pairs. Given
the non-negativity constraint, this least-squares problem is known
as “Non-negative Least Squares” optimization. We employ its “nnls”
implementation offered by the well-known Python scientific library
“scipy”.We employ an iterative scheme to refine the solution process
in a manner similar to the algorithm suggested in [3]. Thus the
initial iteration starts with the euclidean distance as the weights
but then the subsequent iterations are based on a TAZ-TAZ graph
weighted by the travel times estimated by the previous iteration
which will be utilized for the shortest path calculations. For this
TAZ-TAZ network, we don’t employ any specific regularization
method. We run the optimizer for 30 iterations or until convergence
(as measured by the magnitude of the change in the solution vector
between iterations) whichever happens earlier.

The full set of steps in the model building/estimation process is
outlined below.

• Split the available data into training and testing data. We
used a 75%-25% split.

• For each training instance, find the shortest path between
origin and destination based on distance / estimated travel
time. Set coefficients accordingly to produce one equation
similar to Equation 1 for one training instance

• Prepare the (over-determined) system of equations for the
full training set

• Solve for the travel times via a suitable optimization proce-
dure, by minimizing the mean squared error (example: Non
negative least squares, quadratic programming)

• Repeat steps (A) to (C) with travel times in step (C) as weights,
until convergence

• Obtain model performance by predictions on the test data
and calculating suitable error metrics

5 EXPERIMENTAL RESULTS
We used the Uber movement data for the Los Angeles area over
the time period defined by the third quarter of 2016 as the data
of choice. We also selected two different communities from the
TAZ-TAZ graph as described in Section 3 and focused our analysis
on them.

5.1 Convergence and Scaling
We first present the result related to convergence of the optimizer.
Figure 3 shows how the magnitude of the difference vector (dif-
ference between the solution vector for a given iteration and it’s
immediately preceding iteration) changes as iterations proceed for
the community C1. As seen from the figure, the optimizer shows a
clear convergence behavior.
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Figure 3: The convergence of the optimization process that
is part of the travel time estimation flow.

Next, we conduct an analysis of the scalability of the method in
order to inform the needs related to high performance computing
(HPC) to solve for problems at the scale of cities and metropolitan
areas. The overall execution time depends on the number of TAZ
nodes, the number of TAZ-TAZ edges and the total number of data
points in the training set (rows in the Uber data). As we incorporate
larger portions of the overall network, we encounter an increase in
all three of the above mentioned variables. As a result we observe
a sharp increase in the run times for larger datasets. The scaling
behavior of the flow is illustrated in Figure 4. It is very clear from
the figure that when considering the full LA city network with
50k+ nodes and 130k+ edges, when making estimates at the phys-
ical road-network level, HPC based implementations and related
optimizations become very important.

Figure 4: Scaling behavior of themodeling and optimization
flow

5.2 Matrix Completion and Correlations
We now focus our attention on the O − D travel time matrix com-
pletion. As explained in the previous section, once the travel times
for the TAZ nodes and the TAZ-TAZ edges are obtained from the
optimizer, using the training data, we then compute the travel times
for the given TAZ-TAZ O − D pairs in the test data using the for-
ward model established in Equation 1. We then compare this with

the ground-truth values and deduce an average error measure over
the test dataset. Based on this reconstruction, we can complete the
travel time (O −D)matrices by estimating the missing entries from
the forward model with the estimated parameters. The reconstruc-
tion process is visualized for two different communities and for two
different time periods in Figure 6 We note that the model produces
lower error (20%-25%) for the case with higher density of data while
the sparse case (lower density) produces worse errors (40%-45%)
even though the larger data case also meant that the number of
unknowns was twice as large.

Finally, we consider a slightly different form of model validation.
We look at (O − D) pairs with a path length of two edges between
them in the TAZ-TAZ network such that the travel times are present
in the data for these pairs but the travel times for the two edges that
constitute the path between these pairs of TAZs are not present,
but rather estimated from our model and optimization procedure.
We then do this estimation for several hours of the day (a separate
model is run for each hour of the day) and then we plot the time
variation of these travel times. We expect good correlation between
these temporal curves given the geographical proximity. We found
several examples with varying degrees of correlations and we show
two such examples in Figure 5 below where the correlation was
appreciable.

Figure 5: Temporal correlation between given travel times
for TAZ pairs with path length of 2 and estimated travel
times along the constituent edges.
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(a) Travel time heat maps at two different times of the day for the community C1

(b) Travel time heat maps at two different times of the day for the community C2

Figure 6: Travel time heat maps for both the given data (left in all 4 cases) and the reconstructed data (right in all 4 cases)
for two different communities with different densities (or sparsities) of data, for two different times of the day (off-peak and
peak) are shown.
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6 CONCLUSIONS AND FUTUREWORK
In this work we explored the Uber movement data and leveraged
it as a cost-effective surrogate for arterial travel time estimation.
Specifically, in this work we restricted ourselves to a coarse-level
TAZ-TAZ network. We described how the network was constructed
and provided summary network statistics on the same. We then
presented a forward model for the travel time estimation between
any origin-destination TAZ pair. The same model was used in con-
junction with an optimizer on the Uber TAZ-TAZ trip time dataset
to estimate the unknowns and eventually enable the completion
of the (O − D) travel time matrix. We presented results related to
convergence, scaling and different forms of validation. Our future
work is focused on extending the results to the physical road net-
work to estimate travel times along the road segments, reduce the
error via a combination of better models and optimizers and use
HPC resources to scale the flow to city-scale networks.
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