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Abstract—We consider an assignment problem arising in
Fermionic-swap based mapping of the one-body and two-body
interaction terms in simulating time evolution of a sparse
second-quantized electronic structure Hamiltonian on a quantum
computer. Relative efficiency of different assignment algorithms
depends on the relative costs of performing a swap and com-
puting a Hamiltonian interaction term. Under the assumption
that the interaction term cost dominates the computation, we
develop an iterative algorithm that uses minimum cost linear
assignment (MINLA) and matching for one-body interactions,
and hypergraph optimal linear arrangement (HOLA) and partial
distance-2 coloring for two-body interactions, to exploit arbitrary
sparsity in the Hamiltonian for efficient computation. Using a set
of 122 problems from computational chemistry, we demonstrate
performance improvements up to 100% relative to the state-of-
the-art approach for one-body terms and up to 86% utilization
for two-body terms relative to a theoretical peak utilization.
To the best of our knowledge, this is the first study to exploit
arbitrary sparsity in orbital interactions for efficient computation
on one-dimensional qubit connectivity layouts. The proposed
algorithms lay a foundation for extension to map general k-body
interactions that arise in many domains onto generalized qubit
connectivity layouts available in current and future quantum
systems.

I. INTRODUCTION

Molecular simulations play a critical enabling role in do-
mains such as energy-storage materials, efficient catalysis,
biomass conversion, and biochemistry. The tools of quantum
chemistry and statistical mechanics implemented as advanced
parallel computing packages, have proven to be effective and
productive for such simulations [35]. Although great effort has
been expended in designing numerous methods to describe
collective behavior of electrons in correlated systems, the
fundamental understanding of these processes is still inhibited
by the exponential growth of computational costs associated
with representing wave functions on classical computers. In
this context, quantum computing as envisioned by Feynman
and others can significantly alleviate the situation [10],
[31]. Practical quantum simulation of Hamiltonian operator
is limited by the depth of the associated quantum circuits.
As the technology to build quantum computers improves,
one’s ability to simulate scientific challenging Hamiltonians is
fundamentally limited by the algorithms available to translate
the Hamiltonian into an efficient low-depth circuit.

The electronic Hamiltonian represented in a second-
quantized form is structured as a collection of terms, each

corresponding to interactions involving two or four orbitals. In
a typical circuit-level representation, each orbital is mapped to
a qubit and each interaction term involving a given list of or-
bitals is translated into a macro gate (subsequently synthesized
into low-level hardware-specific gates) on the corresponding
qubits. The compilation procedure needs to account for the
underlying limited qubit connectivity.

A key element of optimized mapping is the observation that
not all orbital interactions exist in practice. Sparsity is usually a
reflection of the nature of inter-particle interactions defining a
given quantum system. Sparse Hamiltonian models are preva-
lent in physics and chemistry. For example, spin Hamiltonians
such as Hubbard or Heisenberg models are defined only by
interactions between neighboring sites. Also, in chemistry, the
dimensionality of the Hamiltonian can be reduced by the local-
ization of molecular orbitals, which enables the development
of efficient local approaches [28], [32]. Several specialized
tools such as Cholesky decomposition (CD) and singular value
decomposition (SVD) have already been employed to simplify
the form of the many-body Hamiltonian and to reduce gate
depth in the corresponding quantum simulations of the unitary
evolution.

The focus of this paper is on improving the efficiency of
quantum simulations by exploiting sparsity in the Hamiltonian
operator in its second-quantized representation, where sparsity
is defined as the ratio of actual interactions considered to
all possible interactions. If this ratio is one, the problem is
dense. In particular, we develop novel heuristic algorithms
to minimize interaction depth by maximizing the number of
interactions that can be executed concurrently using a min-
imum linear arrangement (MINLA) and hypergraph optimal
linear arrangement problem (HOLA) [3], in conjunction with
maximum matching [11] and partial distance-2 coloring [5].
We perform detailed empirical evaluation of this algorithm,
and demonstrate its efficacy relative to existing methods. The
proposed method is superior to existing work for systems with
sparse interactions and can be potentially extended to k-body
interactions with arbitrary interaction topology for execution
on quantum systems with general qubit layouts.

We make the following contributions in this work:
• Formulate the mapping of sparse 1-body interactions onto
1-dimensional qubit layouts iteratively using the minimum



linear arrangement problem (MINLA) and maximum match-
ing;

• Formulate the mapping of sparse 2-body interactions onto 1-
dimensional qubit layouts iteratively using the hypergraph
optimal linear arrangement problem (HOLA) and partial
distance-2 coloring; and

• Evaluate the algorithm empirically using a large set of 122
problems with varying degrees of sparsity. We demonstrate
up to 86% utilization relative to a theoretical peak utilization
for 2-body interaction problems, and up to 100% improve-
ment in performance relative to state-of-the-art prior work
for 1-body interaction problems.
To the best of our knowledge, this is the first study to

explicitly consider arbitrary sparsity patterns in the orbital
interactions that are driven by applications, and mapping them
efficiently to 1-dimensional qubit layouts.

The rest of the paper is organized as follows: §II introduces
the Hamiltonian simulation problem and quantum compilation;
§III presents the formulation of the Fermionic swap mapping
problem; §IV describes our solution to efficient mapping of
arbitrarily sparse second-quantized Hamiltonians; §V and §VI
detail our experimental setup and the results, respectively; §VII
summarizes related work; and, §VIII concludes the paper.

II. BACKGROUND

A. Simulating Second-quantized Hamiltonian

Consider a molecule with electron spin-orbital interac-
tions, represented by a quantum Hamiltonian. The goal is
to simulate evolution of this Hamiltonian (or some related
computation involving the Hamiltonian), using a quantum
computer. The second-quantization formulation and occupa-
tion number representation [9] provide a very efficient way
of characterizing many-body effects in the electronic wave
function while automatically assuring its anti-symmetry. In
the second quantization, all operators and many-body wave
function expansion can be represented in terms of creation
and annihilation operators a†p and ap. Using these operators,
one can represent the Hamiltonian operator as:

H =
∑
pq

hpqa
†
paq +

1

2

∑
p,q,r,s

hpqrsa
†
pa
†
qaras (1)

For many electronic structure problems, the Hamiltonian
may be decomposed with good accuracy into a sum of
polynomially many k-local Hamiltonians, i.e., Hamiltonians
involving transfers of at most k electrons between a set
of at most 2k spin-orbitals. Hamiltonians which are so de-
composable are known as k-body Hamiltonians. These k-
body Hamiltonians may be evolved, at least approximately,
by composing evolutions of the k-local Hamiltonians, in any
order, via a process known as Trotterization [30], [34]. The
time evolution of this Hamiltonian on a quantum computer
involves determining a circuit that performs the operation
e−iHt, for a chosen time t on a given initial quantum state;
under Trotterization this is accomplished by evolving the k-
local Hamiltonians.

Fig. 1. A quantum circuit illustration a swap operation between two qubits
(|q0〉 and |q1〉) using three CNOT gates, which are more fundamental gates
in many architectures.

In typical formulations (e.g., using the Jordan-Wigner trans-
form [2]), this circuit mapping involves: (1) allocating one
qubit per spin-orbital, (2) translating each term in e−iHt into
a logical gate that preserves Fermion anti-commutation rules.
Intuitively, anti-commutation rules are preserved by ensuring
a linear ordering of the spin-orbitals (not to be confused with
one-dimensional qubit connnectivity), and mapping a term
involving spin-orbitals p and q to a logical gate that involves all
orbitals between p and q in the second quantization ordering.
If the Hamiltonian is second-quantized, there is a natural
bijection between the Hamiltonian Hilbert space and a qubit
Hilbert space given by using one qubit to represent each spin
orbital.

B. Quantum Circuit Model and Mapping

A quantum circuit is a popular model among the most
widely used logical models of computation involving quantum
devices. Figure1 illustrates a quantum circuit. Each qubit is
represented by a horizontal line, and each operation on one
more more qubits is represented by a box. The boxes may
correspond to elementary gates natively supported by the hard-
ware technology, or abstract operations that are compiled at a
later compilation stage into sequences of elementary gates. The
primary challenge in near-term quantum computing devices is
the limit on the time duration for which a quantum state can
be preserved without interacting with the environment. This
motivates the design of low-depth circuits that can best utilize
a given quantum device.

In addition to the native gate set, the hardware technology
imposes on a constraint on the qubit connectivity; not every
qubit can interact directly with every other. In addition,
implementing multi-qubit gates is much more expensive than
those involving one or two qubits. The limited connectivity
and the preference toward one or two-qubit gates gives rise
to a scheduled reordering problem; qubits must be shuffled
in such a way that the Hamiltonian-local operations can be
performed as qubit-local operations. Typically it is desirable
to perform as many such operations as possible simultaneously
in parallel.

For electronic-structure problems this shuffling requires a
sign change when the occupancy states of two occupied spin
orbitals are exchanged in order to preserve the electrons’ Fermi
statistics; the resulting operation is called a Fermionic swap.
From the perspective of the reordering problem, however,
regular and Fermionic swaps are not different.

In this paper, we focus on mapping the interactions in a
sparse Hamiltonian into a one-dimensional quantum circuit



where the qubits are linearly ordered and quantum gates can
only be applied on neighboring qubits. Ideally, the Hamil-
tonian interaction operations will be mapped to neighboring
qubits with a small number of swaps to shuffle them as
needed.

III. PROBLEM FORMULATION

We define an interaction graph G = (V,E) with vertex
set V representing orbitals and edge set E representing in-
teractions between two orbitals corresponding to one-body
interactions. Similarly, we define an interaction hypergraph
H = (Vo, Eo), where the vertices Vo represent orbitals and
hyperedges Eo represent interactions between a set of up to
four orbitals (corresponding to two-body interactions). Since
the hypergraph representation is a generalization of the graph,
we present this section in terms of H for simplicity. We define
a qubit layout graph L = (Vq, Eq), where the vertices Vq
represent qubits and the edges Eq represent quantum gates
involving a pair of qubits. Without loss of generality, we
assume that the number of orbitals is equal to the number
of qubits for formulation as well as empirical evaluation.

Given an interaction hypergraph H and a qubit layout graph
L, our goal is to map the edges in H to the edges in L.
As illustrated in Figures 2 and 3, our goal is to map orbital
interactions to qubit gates for computation. Since not all edges
in H can be mapped to edges in L in a single instance
due to conflicts arising from shared vertices, we propose an
iterative algorithm that maps a maximal subset of edges in
H to edges in L at each iteration. The overall objective is
to: (i) Minimize the cost of mapping, known as the swap
depth (§IV-A); and (ii) minimize the number of iterations,
known as the interaction depth (§IV-B). In the following
discussion, we provide illustrative examples, first of a 1-body
problem and then of a 2-body problem. We provide formal
definitions for the costs involved in §IV.

Consider a Nitrogen (N2) molecule with 10 orbitals
and the following six 1-body (2-electron) interactions:
{(1, 3), (1, 7), (2, 6), (2, 10), (3, 7), (6, 10)}. Let us consider a
simple 1-dimensional qubit layout for this example, which
represents a set of n qubits that are physically placed along
a line. Each qubit qi has gates to qi−1 and qi+1, except
the terminal qubits that have only one neighbor (graph L in
Figure 2).

Our goal is to map orbital interactions to qubit gates in an
efficient manner. For simplicity, we assume that orbital i will
be mapped to qubit i. For our example, the given ordering is
not a feasible solution since no interaction can be computed by
the underlying qubit layout directly. For instance, interaction
(1, 3) needs to be mapped to q1 and q3, but these qubits do not
have any gates between them that are necessary to perform the
computation. Thus the optimization problem can be formulated
as the renumbering (or reordering) of vertices in H , where a
reordering denotes a specific mapping of interactions to qubits.

Let us now consider a different ordering of the orbitals:
[2, 5, 1, 7, 8, 4, 3, 9, 10, 6], where we have renumbered o1 to o2,
o2 to o5, o3 to o1, and so on. Consequently the interactions

Fig. 2. Illustration of mapping 1-body interactions to 1D qubit layout
architecture. Note that interactions {(2,1), (2,3)} lead to a conflict if
executed concurrently since they share qubit q2.

in H now become: {(2,1), (2,3), (5,4), (5,6), (1, 3), (6, 4)},
where the bold faced interactions that we term as eligible
interactions are directly computable on the quantum machine.
Eligible interactions that share qubits cannot be executed
concurrently in a given iteration. Two such conflicts in our
example are illustrated in Figure 2, where we can either
execute interaction {(2, 1)} or {(2, 3)} in an iteration since
qubit q2 is common to both the interactions. Similarly, we can
either execute {(4, 5)} or {(5, 6)} since qubit q5 is common
to both. Therefore, given a reordering (mapping), we need
to find a mutually exclusive set of interactions that do not
share qubits. For instance, we can pick (2,3) and (5,6) for
concurrent execution. We can then remove these interactions
(edges) from H that leaves us with the following interactions:
{(2,1), (5,4), (1, 3), (6, 4)}. Although, two edges in this set
are eligible edges, we ignore them to compute a new ordering
[2, 1, 3, 5, 4, 6, 7, 8, 9, 10] with the corresponding edges in H:
{(1,2), (2,3), (4,5), (5,6)}, where all edges are eligible
edges. However, only a subset of these eligible edges can
be executed concurrently, for example, (1,2) and (4,5). We
repeat the process until all the interactions are computed. We
describe this iterative process in §IV.

In a similar manner, we illustrate 2-body interactions involv-
ing four electrons in Figure 3. There are four eligible inter-
actions: {(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6), (5, 6, 7, 8)}. Since
these interactions share orbitals/qubits, our best option is to
schedule {(1, 2, 3, 4), (5, 6, 7, 8)} for concurrent execution to
maximize qubit utilization in the first iteration. Since we can
use eight of the ten available qubits, we note that we have
80% utilization of the system for the first iteration. In the
subsequent iterations, the remaining interactions need to be
executed one after another resulting in 40% utilization of
the system for the next two iterations. We provide details of
utilization in §VI.



Fig. 3. Illustration of mapping 2-body interactions to 1D qubit layout
architecture. Note that interactions sharing orbitals (and consequently, qubits)
lead to a conflict if executed concurrently. Thus, in the first iteration, only two
interactions, {(1, 2, 3, 4), (5, 6, 7, 8)}, can be executed concurrently. The two
remaining interactions can be concurrently executed in the second iteration.

TABLE I
SUMMARY OF PROBLEMS AND ALGORITHMS CONSIDERED IN THIS WORK.

Interactions Layout Algorithm Proposed by
1-body 1D LNN, FSN, ITRMAP [21], [33], This work
2-body 1D ITRMAP This work
k-body kD – Future work

IV. ALGORITHMS FOR EFFICIENT MAPPING

In this section, we present an iterative algorithm for map-
ping 1-body and 2-body interactions to a one-dimensional
qubit layout (§III). We first provide an overview of the iterative
algorithm, and then provide details of two key steps of the
algorithm, the first step to reorder the interactions to minimize
the swap depth, and the second step to find a maximal set of
eligible interactions for concurrent execution. We summarize
the types of interactions and proposed solutions for mapping
in Table I.

While Algorithm ITRMAP-1B takes the graph G represent-
ing 1-body orbital interactions as input, Algorithm ITRMAP-
2B takes the hypergraph H representing 2-body orbital in-
teractions as its input. Both algorithms take the graph L
representing qubit layout as a second input, and generate
intermediate data structures, G′ and H ′, to store eligible edges
in G and H , respectively. A maximally independent set of
edges in G′ and H ′ are then selected for execution at a given
iteration. It is to be noted that for 1D layout, the graph L is
simply a line graph. The three main tasks performed at each
iteration are:

1) Reorder: To compute an ordering to align edges in
G (or, hyperedges in H) with corresponding edges in
L using the shortest path distance measure d(e, L) (or,
d(h, L)) as a metric. An ordering is computed using
Algorithm MINLA (or, Algorithm HOLA) (Line 2). The
permutation π returned by MINLA (or, HOLA) is used

Algorithm 1 ITRMAP-1B: Iterative algorithm to map and
execute 1-body interactions on 1-dimensional layouts
Input: Interaction graph G and Layout graph L

1: while (G 6= ∅) do
2: π ← MINLA(G) . Compute reordering
3: G← π(G) . Reorder interactions
4: El ← Eligible edges (G)
5: G′ ← Induced subgraph (G,El)
6: M ← MAXIMUMMATCHING(G′)
7: G← G \M . Remove completed edges

Algorithm 2 ITRMAP-2B: Iterative algorithm to map and
execute 2-body interactions on 1-dimensional layouts
Input: Interaction hypergraph H and Layout graph L

1: while (H 6= ∅) do
2: π ← HOLA(H) . Compute reordering
3: H ← π(H) . Reorder interactions
4: El ← Eligible edges (H)
5: H ′ ← Induced subgraph (H,El)
6: B ← Bipartite (H ′)
7: M ← PARTIALDIST2COLORING(B)
8: H ← H \M . Remove completed edges

to renumber the vertices in graph G (or hypergraph H)
(Line 3).

2) Select: Based on the reordered graph G (or hypergraph
H), select all the interactions that can be computed
on L, denoted by El (Line 4). An intermediate graph
G′ (or, hypergraph H ′) is then constructed to represent
the subgraph induced by the eligible edges (Line 5).
For Algorithm ITRMAP-1B, a maximum matching M
is computed on G′. The edges in M represent all the
edges that can concurrently scheduled for execution for
the given iteration (Line 6 in Algorithm 1). However,
For Algorithm ITRMAP-1B, the induced subgraph H ′

is stored as a bipartite graph B (Line 6 in Algorithm
2). A partial distance-2 coloring of B is computed using
Algorithm PARTIALDIST2COLORING to identify a max-
imal set of eligible (hyper)edges that can be scheduled
for concurrent execution (Line 7).

3) Repeat: The final step is to remove all the interactions
(edges in G or hyperedges in H) that have been executed.
At this step, we can either process all the remaining
eligible edges or reorder the remaining edges once again.
Empirically, we observed that reordering the remaining
edges in G (or, H) provides better performance for the
inputs used in the study (results are provided in § VI).

In the rest of this section, we discuss the metrics and
approaches to minimize the swap depth and interaction depth.
For simplicity, we will provide the definitions for the 2-body
problem using hypergraphs and note that the definitions can be
trivially extended to the 1-body problem where all the edges in
the hypergraph consists of only two vertices (edges in a graph).
The problem can be alternatively formulated as a bi-objective



optimization problem that simultaneously optimizes for swap
depth and interaction depth. However, considering the overall
simplicity and scalability of the proposed two-step approach,
our goal is to develop a computationally efficient heuristic that
can also provide high quality solutions for efficient mapping.

A. Minimizing Swap Depth

In this section, we will introduce a few concepts before
formally defining swap depth. We define a layout function
φ(.) that maps the hyperedges in H to a non-negative number
defined with respect to the graph L as follows:

φ(h) =

{
0 if h ∈ EL
d(h, L) otherwise,

(2)

where EL represents the set of hyperedges in L, and the
function d(h, L) is the distance (in the graph L) between the
minimum-numbered and the maximum-numbered vertices in
a hyperedge h = (i1, . . . , ik) in H . Assuming u = min(h) =
min{i1, . . . , ik} and v = max(h) = max{i1, . . . , ik},

d(h, L) = δL(u, v)− 1, (3)

where δL(x, y) is the length of a shortest path joining vertices
x and y in L.

Current architectural limitations enforce the constraint that
once orbitals are assigned to qubits, we can move orbital
information to other qubits only by swaps involving adjacent
qubits. For instance if qi has information of an arbitrary orbital
and we want to move the information to qi+2 then we need
to first swap the information between qi and qi+1 followed
by a second swap from qi+1 to qi+2. Since each reordering
is essentially moving the orbital information around, it is
associated with a cost. The swaps are performed by qubit
gates, and the cost of reordering is the number of swaps
required to change one sequence of interactions to another,
also known as the Kendall-Tau distance or the Bubble Sort
distance [15]. Formally, we define swap depth as follows.
Given two ranked lists o and l, swap depth:

Sd(o, l) =|{(i, j) : i < j,

((o(i) < o(j)) AND (l(i) > l(j))) OR
((o(i) > o(j)) AND (l(i) < l(j)))}|,

(4)

where l(i) represents the rank of i in l. In other words,
the metric counts the number of disagreements between the
relative ranking of two elements in the list. Since disjoint
swaps can be performed independently on a quantum system,
we adapt the definition of swap depth such that we count it
only once for all the swaps that can be performed concurrently
at a given step. Thus, swap depth reduces to the number
of steps in the odd-even sort variant of the Bubble Sort
algorithm [22].

Since our goal is to minimize the swap depth, the intuition
is to find an ordering, π, that aligns H as best as possible to
L to reduce the number of remaps of edges in H , and thereby,

Algorithm 3 MINLA: Algorithm to compute a minimum
linear arrangement based permutation
Input: A graph G = (V,E), and a parameter for maximum
number of iterations (maxcount)
Output: An ordering πbest of G

1: πbest ← ∅
2: π ← random initial ordering
3: N ← number of vertices in G
4: counter ← 0
5: while counter < maxcount do
6: i = random(1, N − 1)
7: π ← exchange(π[i], π[i+ 1])
8: if cost(π) < cost(πbest) then
9: πbest ← π

10: counter ← 0
11: else
12: counter ← counter + 1

13: return πbest

the total cost of swapping. For an arbitrary qubit layout, the
ordering π is defined as follows:

π = argmin
π′

∑
h∈H

d(π′(h), L), (5)

where the permutation π′ ranges over all possible orderings.
It is to be noted that for 1-dimensional layout, the

graph L reduces to a line graph. For 1-body interactions
with 1-dimensional layout, a reordering that minimizes swap
depth can be formulated as a Minimum Linear Arrangement
(MINLA) problem [18], [23], where for an edge h = (i, j)
and a layout function φ(h) = |i−j|, an ordering πm is defined
as follows:

πm = argmin
π′

∑
(i,j)∈H

|π′(i)− π′(j)|. (6)

MINLA is known to be NP-hard [17], and techniques such
as dynamic programming and mixed-integer linear program-
ming based approaches to solve the problem optimally require
exponential time [29]. Heuristic approaches based on spectral
sequencing and simulated annealing have been proposed in lit-
erature. Empirical evaluations demonstrate that while spectral
sequencing based methods are faster, their quality is inferior to
those computed using simulated annealing based methods [29].
We therefore implement a simulated annealing based algorithm
of Nahar et al. as illustrated in Algorithm 3 [26].

Algorithm 3 starts with an initial random ordering π
(Line 2). At each iteration the algorithm randomly picks an
element of the current ordering and exchanges it with the
next element to generate a new ordering (Line 7). If the new
ordering has a lower cost than the best ordering observed
so far, then the best ordering is updated with this solution
(Line 9). Otherwise, the algorithm produces another ordering
through random exchanges. If no better ordering is found after
a specified number of attempts (maxcount), the algorithm
returns the best ordering that it has observed so far, πbest
(Line 13).



Algorithm 4 HOLA: Compute a Hypergraph Optimal Linear
Arrangement (HOLA) of a hypergraph
Input: 2-body interaction yypergraph H , and a parameter for
maximum number of iterations (maxcount)
Output: An ordering π of H

1: G← Reduced form of H . Hyperedges to paths
2: π ← MINLA(G,maxcount)
3: return π

Let us now consider the problem of mapping 2-body inter-
actions to a 1-dimensional layout. A reordering that minimizes
swap depth can be formulated as a Hypergraph Optimal Linear
Arrangement (HOLA) problem [3], [16]. Each hyperedge
h = {i1, i2, . . . , ik} is sorted from the smallest to largest
vertex id, i.e., i1 ≤ i2 ≤ . . . ≤ ik. The layout function is
φ(h) = |i1 − i4|, and the ordering πh is defined as follows:

πh = argmin
π′

∑
(i,j)∈H

|max({pi′(h)} −min{π′(h)}|. (7)

Jin et al. demonstrate that an efficient approach to solve
HOLA is to first transform a hypergraph to a graph, and then
solve MINLA on the reduced graph [16]. The reduced graph
G has the same number of vertices as the original hypergraph
H . Then an ordered path P (i1, i2 . . . ik) is created in G for
each hyperedge h ∈ H . Jin et al. prove that this reduction
leads to an equivalent result, in a sense that the objective cost
of solving the original hypergraph reordering problem directly
will be equal to cost of solving the reduced graph reordering
problem using MINLA [16]. The worst-case time complexity
of the reduction is O(|V0||E0|), where |V0| is the number of
vertices and |E0| is the number of hyperedges in H .

Algorithm 4 first reduces the edges in the input hypergraph
H to paths in the graph G (Line 1), and then computes the
best ordering by a call to Algorithm MINLA on the graph G
(Line 2).

Reordering of H results in a set of eligible edges that can
be mapped for execution on a 1-dimensional qubit circuit. The
next step is to identify an optimal number of disjoint edges
(interactions) that can be executed concurrently, which will
result in the minimization of the interaction depth.

B. Minimizing Interaction Depth

Let us consider the example scenario of 1-body interactions
presented in §III. We observe that after reordering in the
first iteration, four out of six interactions become eligible
for execution. However, not all of these six interactions can
be scheduled for concurrent execution. Since our goal is to
minimize the interaction depth, i.e., to minimize the number
of iterations to complete the execution of all the interactions,
we need to identify a maximal set of interactions that can
be executed concurrently in each iteration. Since we consider
eligible edges for a given ordering, computed with the primary
goal of minimizing the swap cost (using Algorithm 4),
we might not be able to identify the maximum number of
interactions that might be available for concurrent execution

during a given iteration. However, given a set of eligible
edges, we can optimize to find a maximum number of disjoint
edges that can be executed concurrently by using a maximum
matching. A matching M in a graph is a subset of edges such
that no two edges in M are incident on the same vertex [11].

For 1-body problems, the lower bound on interaction depth
is the minimum number of colors needed to color the edges
of the interaction graph G (§III). Given a graph, the problem
of assigning colors to edges such that adjacent edges receive
distinct colors is the edge coloring problem [4]. The minimum
number of colors in an edge coloring is the chromatic index
of a graph. Since any pair of interactions that share an orbital
cannot be executed in the same iteration (equivalently edges
that share an endpoint cannot be assigned the same color),
the chromatic index represents the fewest iterations necessary
to execute all the interactions (the interaction depth). The
chromatic index of a graph is either the maximum vertex
degree or this degree plus one.

The first step towards this computation is the construction of
a bipartite graph G = (S∪T,E) from the reordered graph H ′,
as indicated in Algorithm ITRMAP-2B (Line 6). The vertex set
V (G) = S∪T is formed from the vertices and edges in H ′. We
reduce H ′ to G as follows: For each unique vertex vi ∈ H ′,
we add a vertex to S(G), S ← S ∪ {vi}. For each hyperedge
ei ∈ H ′, we add a unique vertex to T (G), T ← T ∪ {ti}
representing edge ei. For each vertex in the hyperedge ei, we
add a corresponding edge (si, ti) to E(G).

In order to identify the maximum number of disjoint edges
for concurrent execution from an eligible set, we compute a
partial distance-2 coloring in G, where we only color the
vertices in T . Given a graph G = (V,E), a distance-k coloring
assigns unique identities (colors) to each vertex such that no
two vertices at a distance k from each other receive the same
color. A partial distance-2 coloring of G is an assignment of
colors to every vertex in T such that no two vertices in T that
share a neighbor in S are assigned the same color. Therefore,
we can observe that two hyperedges in H ′ that share a vertex
(orbital/qubit) would receive distinct colors.

In order to find a maximal set of hyperedges that can
be scheduled for concurrent execution, we pick the color
class (color id) with the maximum number of T -vertices
(hyperedges). Since any two hyperedges in a color class are
guaranteed to be disjoint (do not share a vertex), they will
not generate conflicts for execution. Since graph coloring is
known to be NP-hard [5], we adapt the heuristics proposed by
Çatalyürek et al. for computing partial distance-2 coloring in
parallel [5], as presented in Algorithm 5.

Algorithm 5 maintains a data structure, forbidden, for
each vertex in T to mark all the forbidden colors that have
already been used by its distance-2 neighbors (Lines 4 to 7),
and then picks the minimum available color for t ∈ T (Line
8). Since the algorithm processes vertices in parallel, there
could be conflicts that are created in the concurrent coloring
phase, and need to be resolved. The conflicts are detected in
the second phase (Lines 11 to 15). The algorithm iterates until
all the vertices in T are colored.



Algorithm 5 PARTIALDIST2COLORING: Compute a partial
distance-2 coloring
Input: A bipartite graph G = (S ∪ T,E)
Output: Color assignment color for each vertex in T

1: color← ∅; forbidden← ∅;
2: Q← T
3: while Q 6= ∅ do
4: for each t ∈ Q in parallel do
5: for each s ∈ adj(t) do
6: for each t̂ ∈ adj(s) do
7: forbidden[color[t̂]] ← t

8: c← min{i > 0: forbidden[color[i]] 6= t}
9: color[t]← c

10: R← ∅
11: for each t ∈ Q in parallel do
12: for each s ∈ adj(t) do
13: for each t̂ ∈ adj(s) do
14: if color[t]=color[t̂] and t > t̂ then
15: R← R ∪ {t}
16: Q← R

17: return M

An alternative way to formulate the computation of a
maximal set of disjoint hyperedges is the maximum set packing
(MSP) problem, which is one of Karp’s 21 NP-complete
problems [19]. Given a finite set S of n elements and a list
of subsets of S, the MSP problem finds a collection M of
subsets of maximum cardinality that cover n elements with the
constraint that the subsets in M are pairwise mutually disjoint.
In our case, the qubits are the elements and the eligible inter-
actions (hyperedges) form the list of subsets. We use a greedy
heuristic algorithm [12] in our current implementation that
finds a maximal set of mutually exclusive set of interactions
instead of the maximum number of interactions.

We empirically evaluated the performance of Algorithm
ITRMAP using a large set of problems from quantum chem-
istry. We present the evaluation results in the next section.

V. EXPERIMENTAL SETUP

Our test set consists of 122 problems from quantum chem-
istry with varying degrees of sparsity and generalizations. We
evaluated the proposed algorithms on all the 122 problems for
1-body and 2-body interactions. We present detailed results
in this section on ten representative problems for 2-body
interactions. These problems are chosen with varying degree of
molecular complexity described next; some statistics on these
problems are summarized in Table II. Detailed information on
the entire dataset is also available for download 1.

As benchmarks to illustrate the performance of new al-
gorithms we have chosen several molecular systems that
epitomize basis problems encountered in studies of chemical
processes. In particular, the main emphasis is on establishing
dependencies between the gate depth and (i) strength of the

1 https://hpc.pnl.gov/people/hala/files/hipc 2 1D full.xlsx

correlation effects, (ii) size of the active space (i.e., the number
of correlated orbitals), and (iii) the number of correlated
electrons. Excellent benchmarks to study these problems are:
• H4 system, where the quasi-degeneracy of the ground-state

wave function can be controlled by a single geometrical
parameter α (for α = 0.0 the four hydrogen atoms constitute
a square geometry, for α = 0.5 H4 assumes a linear
configuration);

• H4 dimer to study the separation processes in molecular
systems;

• potential energy curve of the LiH system;
• breaking the triple bond in the N2 system;
• studies of ozone molecule opening relevant to studies of

conical intersections; and
• C20 (bowl, fullerene, and ring configurations), beta-

carotene, and cytosine systems for various choices of active
spaces and the number of correlated electrons.
We also considered typical systems used in studies of

many-body techniques: beryllium, boron, and argon atoms,
BeH2, F2, and CH4 systems, and stretching bond in the
water molecule. To illustrate the effect of system size growth
we used linear chain of the H2 molecules – (H2)n for
n = 2, . . . , 12. We also employed various types of basis sets:
STO-3G (LiH, H2O, N2) [14], STO-6G (H4 system, H4 dimer,
and (H2)n) [14], 6-31G (Be, B, BeH2, F2, cytosine) [14], 6-
311G (β-carotene) [24], cc-pVDZ (H2O, C20, Ar, Be) [8],
cc-pVTZ (O3) [8].

We quantify the benefits of exploiting arbitrary sparsity
using two metrics: swap depth Cr, and interaction depth Cd in
the context of the quantum molecular simulation, the chemistry
application that we are considering. Both these metrics are
important and define the complexity of a quantum circuit.
However, we focus on interaction depth which has direct
impact on quality and accuracy of the quantum molecular sim-
ulation. Since simulated annealing is a probabilistic technique,
we repeat each experiment 10× and report the median value
for each metric. We implement our algorithms using Python
(v3.7). The code is parallelized using Python multiprocessor
package. We perform the experiments on an 80-core Intel
Xeon E7 − 8860 system with processor speed of 2.27 GHz
and equipped with 1 TB of primary memory.

VI. EXPERIMENTAL RESULTS

We provide results from empirical evaluation of the pro-
posed algorithm in this section. We evaluate the efficiency
of the proposed methods using two metrics – swap depth
(swap cost) and interaction depth (interaction cost) – that were
defined in §IV. We also provide relative performance of the
proposed algorithm with previous work for 1-body interaction
problems. Since no prior work exists for 2-body interactions,
we provide insight into the utilization of a circuit relative to
an ideal situation where all the qubits are used.

A. Relative Performance for 1-body Interaction Problems

In order to demonstrate the efficacy of the proposed meth-
ods, we perform relative comparison of our approach with



Problem # Orbitals # Interaction # Unique Interactions Swap depth Interaction depth Run time (Sec)
h2o oh3.0 sto3g 7 274 71 154 39 1.1

be 6-31g fci 9 417 136 300 62 1.82
n2 4 00Re sto3g 10 364 143 282 55 2.13

ch4 sto6g fci 9 837 222 481 100 8.21
beh2 6-31g fci 13 1050 397 789 123 11.98

o3 13 6 6 110deg ccpvtz 13 2028 700 1429 219 21.87
cytosine 6-31g 13 4186 1079 2293 352 48.10

beta carotene 6 311G 16 4708 1604 3173 404 97.90
h2 11 sto6g 1.0au 22 16159 5456 10306 1012 554.71

c20 bowl ccpvdz 22 9 9 22 27245 8324 16356 1605 703.62
TABLE II

SUMMARY OF TEN 2-BODY INTERACTION PROBLEMS REPRESENTING DIFFERENT CHEMICAL PROCESSES. THESE TEN PROBLEMS ARE CHOSEN FROM A
LARGER SET OF 122 PROBLEMS USED FOR EVALUATION.

state-of-the-art work of Kivlichan et al. for dense prob-
lems [21]. Relative performance of ITRMAP to FSN using
a set of 122 problems is captured in Figure 4. Performance
improvements are presented as percentages relative to FSN

( (TFSN−TITRMAP )
TFSN

), and are plotted along the Y-axis. Density
of an input is plotted along the X-axis. A problem with
100% density means that all pairs of orbital interactions are
considered. Since FSN was designed for dense interactions,
we expect FSN to perform better than ITRMAP for denser
problems. The scatter plot in Figure 4 shows a strong (neg-
ative) correlation between density and swap depth (with a
correlation coefficient of −0.77), and between density and
interaction depth (correlation coefficient of −0.82). Thus, the
sparser the problem, the higher is the gain in performance
for ITRMAP relative to FSN. We also observe significant
performance gains for problems that are more than 50%
sparse. The use of heuristics to solve MINLA leads to a loss
in performance for denser problems (density ≥ 30%) with
respect to the swap depth. However, we do not observe loss in
the performance for interaction depth for the same set of dense
problems. Although, we test the performance of ITRMAP for
a wide range of problems, we expect stronger performance for
complex sparsity structures and qubit layouts beyond simple
1-D structures.

B. Performance for 2-body Interaction Problems

We compute the utilization, up as the ratio of the number
of qubits in M (the interactions that could be computed at this
iteration) over the total number of qubits for a given iteration
p. The variable up indicates what percent of the total qubits are
being used in a given iteration. We define the qubit utilization
uq as the geometric mean of up over all iterations p. We
argue that if uq is (high) then the interaction depth is optimal
or close to optimal. This is so because an optimal algorithm
will assign a maximum number of concurrent eligible edges
(i.e., maximize up) in order to minimize interaction depth. We
show in Figure 5 that the geometric mean of qubit utilization
across all the iterations for Algorithm ITRMAP is at least 70%
for all the test problems. We also show that uq increases
almost linearly with the number of interactions (problem
size), and utilization increases to about 90% for the larger
problems. Intuitively, as the number of interactions increases
the algorithm has more choices for finding concurrent eligible
edges at each iteration, and therefore, it is easier for a heuristic
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Fig. 4. Performance improvements of ITRMAP relative to FSN by exploiting
sparsity. Density of interactions is plotted along X-axis and the benefits in
swap depth and interaction depth are plotted along Y-axis (as percentage
improvements). Bottom right of the figure represents dense problems with
loss in performance for ITRMAP.

algorithm to find M with higher values of up. Broadly, we
observe that the proposed method is capable of computing
high quality solutions that are closer to optimal solutions.
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Fig. 5. Geometric mean of qubit utilization across all the iterations for a
given problem is plotted along the Y-axis. Problems plotted along the X-axis
are ordered by the number of orbitals. A linear trend line is shown using
dashed black line.

We also plot the per-iteration qubit utilization up in Fig-
ures 6, 7 and 8. We observe that initial iterations have



high utilization; as the algorithms progress there are fewer
interactions available for qubit assignment, and up goes down.
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Fig. 6. Utilization per iteration for problem be_6-31g_fci with 62
iterations. We observe a mean of 73.12 and standard deviation of 17.26
across all the values.
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Fig. 7. Utilization per iteration for problem beta_carotene_6_311G
with 404 iterations. We observe a mean of 86.88 and standard deviation of
13.00 across all the values.

We show the relationship between the problem size (the
number of orbitals), and the interaction depth and swap depth
in Figure VI-B. We observe that both the swap depth and
interaction depth increase linearly with the number of electron
orbitals (with high confidence). We note that the number of
possible k-body interactions with n orbitals is O(nk). How-
ever, our algorithm successfully exploits the sparsity structure
and solves the problem in linear depths with the increase of
n. We believe that this relationship will also hold for higher
k-body interaction cases.

Finally, we report the run times for each problem in Table II.
We implemented the pipeline using Python v3.7. The most
time consuming computation of the pipeline is cost evaluation
of an ordering (line 8 in Algorithm 3). Since this step is em-
barrassingly parallel, we employed the Python multiprocessing
package to parallelize the evaluation.
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Fig. 8. Utilization per iteration for problem c20_bowl_ccpvdz_22_9_9
with 1605 iterations. We observe a mean of 88.16 and standard deviation of
8.52 across all the values.
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Fig. 9. Depth versus Number of Interactions: Swap depth (blue diamonds)
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VII. RELATED WORK

Mapping dense (all-pairs) 1-body interactions for execution
on simple 1-dimensional or very simple qubit layouts have
been explored in literature. Two closely related works are the
following. Kivlichan et al. present the FSN Algorithm designed
to efficiently compute all-pairs of orbital interactions [21]. The
algorithm is optimal in the sense that there is no swapping
method which brings all pairs of qubits to adjacency which
has asymptotically shorter reordering cost or circuit depth.

For a given number of orbitals n, FSN has a reordering
cost of Cr = n(n−1)/2 with an interaction depth of Cd = n.
While the interaction depth is linear in the number of the
orbitals, the quadratic cost for reordering becomes a limitation
if the underlying interactions are sparse; even if circuit depth
is not increased the nontrivial operations can be expected to
contribute to circuit noise. We provide relative performance of
our approach with FSN in §VI to demonstrate the benefits of
exploiting sparsity. Although the LNN Algorithm of Shafaei
et al. improves the reordering cost by taking advantage of
sparsity patterns, it performs global reordering only once [33].



We have observed from our experiments that performing re-
ordering only once fails to solve the problem completely when
additional swaps become necessary. Maximizing concurrent
execution of eligible interactions is not considered in LNN.

For the k-body dense interaction case, [27] provides a
recursive algorithm for producing asymptotically swap-depth
optimal networks in which the interaction terms are executed
as 2k-qubit local operators. The required swap depth is
O(n2k−1), with the k = 1 case reducing to the method of [21].
For general k, unlike the k = 1 case, the method seems
unlikely to be reordering-optimal for dense interactions.

For an in-depth discussion of Hamiltonian sparsity issues
as they relate to quantum computing, see [25].

The decomposition of a Hamiltonian into local Hamiltonian
operators is usually followed by an evolution of that Hamil-
tonian expressed in terms of local Hamiltonian operators. The
cost metrics we have defined are most relevant when the local
operators are evaluated sequentially and that the order of the
operators doesn’t matter. This is the case when Hamiltonians
are evolved via Trotterization [30], [34]. Other Hamiltonian
evolution algorithms, such as linear combinations of unitaries
[7] and qubitization [13], require a separate performance
analysis beyond the scope of this paper.

Our work focuses on electron interactions in second quan-
tized Hamiltonians. In this case, electron orbitals have a
localized qubit representation. There are also first-quantized
approaches to electronic structure calculation (see e.g. [20]), in
which each electron has a localized multi-qubit representation
which encodes the orbital-occupancy state of that electron. For
problems with small, fixed electron number and a large number
of orbitals, it may be more efficient to use a first-quantized
representation. In this case, the Hamiltonian will require
interactions between all of the electrons and one obtains the
dense interaction problem but with orbital-occupancy-qubits
replaced by multi-qubit localized storage units. The sparse
interaction case does not occur for first-quantized electronic
structure Hamiltonians, as it is occupancy rather than identity
which prevents electrons from interacting.

For some problems, it is possible to work in another
Hamiltonian basis, such as the plane wave basis [1] in order
to reduce the number of Hamiltonian interaction terms.

The order in which local Hamiltonians are evolved does
affect the accuracy of a Trotter decomposition, but it is infea-
sible to determine which order is best. Empirically, it has been
shown that reshuffling the order of local Hamiltonians between
Trotter steps can improve the accuracy of a Hamiltonian
evolution [6]. Since our method is heuristic, some variant of
this approach is possible, but its performance would need to
be tested empirically.

VIII. CONCLUSIONS AND FUTURE WORK

We presented a novel formulation for explicitly considering
arbitrary sparsity in one-body and two-body interactions for
execution on one-dimensional qubit layouts using hypergraph
optimal linear arrangements and partial distance-2 coloring.
We demonstrated up to 100% improvement while measuring

two key metrics for performance relative to the state-of-the-art
solutions for one-body problems, and up to 86% improvement
in utilization relative to a theoretical peak utilization for two-
body problems.

Explicit consideration of sparsity is not only reflective
of real-world molecular simulations, but also has significant
impact on performance. We therefore plan to extend our work
to include k-body interactions on general m-dimensional qubit
layout architectures. We observe that the hypergraph based
formulation presented in this paper can be used to formulate
k-body interactions for an arbitrary value of k ≥ 1. However,
extending the qubit layout from 1-dimension to m-dimensions,
for m ≥ 2, will necessitate a major change in the mapping of
eligible edges to qubits. Further, qubit layouts can also feature
arbitrary connection topologies. We plan to extend our work
to address this combinatorial problem in our future work.

To the best of our knowledge, this is the first work to exploit
arbitrary sparsity of orbital interactions. We therefore believe
that this work will be of interest to a broad set of researchers
and practitioners looking to exploit the potential of quantum
computing for molecular simulations.
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