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Abstract. New emerging applications including genomic, multimedia,and geo-
spatial technologies have necessitated the handling of complex application ob-
jectsthat are highly structured, large, and of variable length. Currently, such ob-
jects are handled using filesystem formats like HDF and NetCDF as well as the
XML and BLOB data types in databases. However, some of these approaches are
very application specific and do not provide proper levels ofdata abstraction for
the users. Others do not support random updates or cannot manage large volumes
of structured data and provide their associated operations. In this paper, we pro-
pose a novel two-step solution to manage and query application objects within
databases. First, we present a generalized conceptual framework to capture and
validate the structure of application objects by means of atype structure speci-
fication. Second, we introduce a novel data type calledIntelligent Binary Large
Object(iBLOB) that leverages the traditional BLOB type in databases, preserves
the structure of application objects, and provides smart query and update capa-
bilities. The iBLOB framework generates a type structure specific application
programming interface (API) that allows applications to easily access the compo-
nents of complex application objects. This greatly simplifies the ease with which
new type systems can be implemented inside traditional DBMS.

1 Introduction

Many fields in computer science are increasingly confrontedwith the problem of han-
dling large, variable-length, highly structured, complexapplication objectsand en-
abling their storage, retrieval, and update by applicationprograms in a user-friendly,
efficient, and high-level manner. Examples of such objects include biological sequence
data, spatial data, spatiotemporal data, multimedia data,and image data, just to name
a few. Traditional database management systems (DBMS) are well suited to store and
manage large, unstructured alphanumeric data. However, storing and manipulating large,
structured application objects at the low byte level and providing operations on them are
hardly supported.Binary large objects(BLOBs) provide the only means to store such
objects. However, BLOBs represent them as low-level, binary strings and do not pre-
serve their structure. As a result, this database solution turns out to be dissatisfactory.
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Hence, scientists often use special file formats likeNetCDF (Network Common
Data Format) and HDF5 (Hierarchical Data Format) to store such objects in files.
Unfortunately, without the support of a DBMS, standard features like SQL querying,
concurrency control, transaction management, security and recovery are unavailable
(data management problem). A largely accepted approach to handling complex data is
to model and implement them as values ofabstract data types(ADT) in a type system,
or algebra, which is then embedded into an extensible DBMS and its querylanguage.
This enables their use as attribute data types in a database schema without disclosing
the implementation details of their complex internal structure to the user. At the type
system level, extensible DBMSs enable the specification of new ADTs like spatial, im-
age and XML data types. However, these ADTs have DBMS specificimplementations
and are not universally deployable (generality problem). BLOBs are not well suited for
structured object management. They are built for storing unstructured data as byte se-
quences and offer low-level interfaces for simple read and write access to byte ranges.
BLOBs do not understand the semantics of the internal structure of the application
objects stored in them, and therefore, do not include methods to access internal com-
ponents of complex objects (abstraction problem). Thus the entire object needs to be
loaded into main memory to understand its structural semantics and get access to the
component of interest. Further, BLOBs typically allow datato be appended, truncated,
and modified through the overwriting of bytes. However, general data insertions and
deletions are not supported unless the user explicitly shifts data (update problem).

In this paper, we present a novel approach for complex objectmanagement that
addresses the data management, generality, abstraction and update problems. We first
propose a generalized method namedtype structure specification, for representing and
interpreting the structure of application objects. This specification provides an interface
for the ADT implementer to describe the structure of complexobjects at the conceptual
level. Based on this specification we employ a generalized framework, calledintelli-
gent binary large objects(iBLOBs), for the efficient and high-level storage, retrieval,
and update of hierarchically structured complex objects indatabases. iBLOBs store
complex objects by utilizing the unstructured storage capabilities of DBMS and provide
component-wise access to them. In this sense, they serve as acommunication bridge be-
tween the high-level abstract type system and the low-levelbinary storage. This frame-
work is based on two orthogonal concepts calledstructured indexandsequence index. A
structured indexfacilitates the preservation of the structural composition of application
objects in unstructured BLOB storage. Asequence indexis a mechanism that permits
full support of random updatesin a BLOB environment. Though we have found our
approach to significantly improve application developmentwith complex data, due to
space constraints, in this paper we only provide the conceptual specifications and do
not show performance comparisons to other models.

Section 2 describes relevant research related to the iBLOB concept. In Section 3, we
describe the applications that involve large structured application objects, the existing
approaches to handling them, and our approach to dealing with structured objects in
a database context. We introduce the concept of type structure specification and the
iBLOB framework in Sections 4 and 5. Finally, in Section 6, wedraw some conclusions
and discuss future work.



2 Related Work

The need for extensibility in databases, in general, and fornew data types in databases
[11], in particular, has been the topic of extensive research from the late eighties. In
this section, we review work related to the storage and management of structured large
application objects. The four main approaches can be subdivided intospecialized file
formats, newDBMS prototypes, traditional relational DBMS, andobject-oriented ex-
tensibility mechanisms in DBMS.

Specialized file formatscan be further categorized into text formats and binary for-
mats [8]. Text formats organize data as a stream of unicode characters whereas binary
formats store numbers in “native” formats. XML [4] is a universal standard text data
format primarily meant for data exchange. A critical issue with all text data formats is
that they make the data structure publicly visible and do notprovide random access to
specific subcomponents. The whole XML file has to be loaded into the main memory
to extract the data portion of interest. Moreover, the methods used to define the legal
structure for a XML document such as Document Type Definition(DTD) and XML
Schema Definition (XSD) have several shortcomings. DTD lacks support for datatypes
and inheritance, while XSD is over-verbose and provides a loose collection of tools to
construct any grammar, which makes it unintuitive when defining new types and com-
plex objects. On the other hand, binary data formats like NetCDF [8, 9] and HDF [1, 8]
support random access of subcomponent data. However, structural update is still prob-
lematic in both formats. Secondly, since HDF stores a large amount of internal struc-
tural specifications, the file size is considerably larger than a flat-file or the database
volume. Thirdly, these do not take advantage of DBMS features such as transaction
management, concurrency control and recovery.

The second approach to storing large objects is the development of newDBMS
prototypesas standalone data management solutions. These include systems such as
BSSS[7], DASDBS, [10], EOS[3], Exodus[5], Genesis[2], andStarburst[6]. These
systems operate on variable-length, uninterpreted byte sequences and offer low-level
byte range operations for insertion, deletion, and modification. However, these systems
do not manage structural information of large application objects and are hence unable
to provide random access to object components.

The third approach taken to store large objects is theuse of tables, XML and BLOBs
in traditional object-relational database management systems. Hierarchical structures
can be stored in tables by using a separate attribute column that cross-references tuples
with their primary keys. However, the drawback of this method is that SQL querying
becomes convoluted and has to be supported by complex procedural language functions
inside the database. Further, these queries are slow because of the need for multiple
joins between tables. Some ORDBMSs like Oracle provide built-in support for XML
using a new XMLType. XMLType storage is handled via Character LOBs (CLOBs) or
through relational storage with predefined schema. However, CLOBs do not support
random access to XML elements. Moreover, when stored in tables, a high percent of
storage is occupied by XML tags, which translates into a large storage overhead. On the
contrary, our iBLOBs use byte level offsets to mark the structure, which requires much
less storage than XMLType. Binary Large OBjects (BLOBs) provide another means to



store large objects in databases. BLOBs store unstructured, binary data and hence the
entire BLOB has to be loaded into main memory each time for processing.

The fourth approach to storing large objects is the use ofobject-oriented extension
mechanismsin databases. Most popular DBMS support the CREATE TYPE construct
to create user-defined data types. However, the type constructors provided (like array
constructors) do not allow to create largeandvariable-length application objects.

3 Problems with Handling Structured Application Objects in
Database Systems and Our Solution

The desired operations on the complex, structured, and variable length application ob-
jects typically involve high complexity, long execution time and large memory. For
example,region objects are complex application objects that are frequently used in
GIS applications. As shown in Figure 1, a region object consists of components called
faces, andfacesare enclosed bycycles. Eachcycleis a closed sequence of connected
segments. Applications that deal with regions might be interested innumeric operations
that compute thearea, theperimeterand thenumber of facesof a region. They might
also be interested in geometric operations that compute theintersection, union, anddif-
ferenceof two regions. Many more operations on regions are relevantto applications
that work with maps and images. In any case, the implementation of an operation re-
quires easy access to components of structured objects (e.g., segments, cycles, and faces
of a region) that uses less memory and runs in less time.

Since database systems provide built-in advanced featureslike the SQL query lan-
guage, transaction control, and security, handling complex objects in a database context
is an expedient strategy. Most approaches are built upon twoimportant architectures
that enable database support for applications involving complex application objects.

Early approaches apply alayered architectureas shown in Figure 2a, in which a
middlewarethat handles complex application objects is clearly separated from theap-
plication front-endthat provides services and analysis methods to its users. Inthis archi-
tecture, only the underlying primitive data are physicallystored in traditional RDBMS
tables. The knowledge about the structure of complex objects is maintained in the mid-
dleware. It is the responsibility of the middleware to load the primitive data from the
underlying database tables, to reconstruct complex objects from the primitive data, and

Fig. 1. A region object as an example of a complex, structured application object. It contains the
faces F1, F2, and F3, which consist of the cycles C1 and C2 for F1, C3 for F2, and C4 for F3.
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Fig. 2. The layered architecture (a) and the integrated architecture (b) and our solution (c).

to provide operations on complex objects. The underlying DBMS in the layered archi-
tecture does not understand the semantics of the complex data stored. In this sense, the
database is of limited value, and the burden is on the application developer to imple-
ment a middleware for handling complex objects. This complicates and slows down the
application development process.

A largely accepted approach is to model and implement complex data asabstract
data types(ADTs) in a type system, oralgebra, which is then embeded into an exten-
sible DBMS and its query language. This approach employs anintegrated architecture
(Figure 2(b)), where the applications directly interact with the extended database sys-
tem, and use the ADTs as attribute data types in a database schema. Some commercial
database vendors like Oracle and Postgres have included some ADTs like spatial data
types as built-in data types in their database products. Extensible DBMS provides users
the interfaces for implementing their own ADT so that all types of applications can be
supported. Since the only available data structure for storing complex objects with vari-
able length is BLOB, the implementations of ADTs for complexobjects are generally
based on BLOBs. The implementation of an abstract data type involves three tasks, the
design of binary representation, the implementation of component retrieval and update,
and the implementation of high level operations and predicates.

The integrated architecture has obvious advantages. It transfers the burden of han-
dling complex objects from the application developer to databases. Once abstract data
types are designed and integrated into a database context, applications that deal with
complex objects become standard database applications, which require no special treat-
ment. This simplifies and speeds up the development process for complex applications.
However, the drawback of this approach is that ADTs for structured application objects
rely on the unstructured BLOB type, which provides only bytelevel operations that
complicate, or even foil, the implementation of component retrieval and update. Byte
manipulation is a redundant and tedious task fortype system implementerswho want
to implement a high-level type system because they want to focus on the design of the
data types and the algorithms for the high-level operationsand predicates.



In this paper, we propose a new concept that extends the integrated architecture ap-
proach, provides the type system implementers with a high level access to complex ob-
jects, and is capable of handling any structured application objects. In our concept, we
apply the integrated architecture approach and extend it with a generalized framework
(Figure 2c) that consists of two components, thetype structure specification(Section 4)
and theintelligent BLOBconcept (Section 5). The type structure specification consists
of algebraic expressions that are used by type system implementers to specify the inter-
nal hierarchy of the abstract data type. It is later used as the meta data for the intelligent
BLOB to identify the semantic meaning of each structure component. Further, as part of
the type structure specification we provide a set of high-level functions as interfaces for
type system implementers to create, access, or manipulate data at the component level.
To support the corresponding interfaces, we propose a generic storage method calledin-
telligent BLOB(iBLOB), which is a binary array whose implementation is based on the
BLOB type and which maintains hierarchical information. Itis “intelligent” because,
unlike BLOBs, it understands the structure of the object stored and supports fast access,
insertion and update to components at any level in the objecthierarchy.

The type structure specification in the framework provides an abstract view of the
application object which hides the implementation detailsof the underlying data struc-
ture. The underlying intelligent BLOBs ensure a generic storage solution for any kinds
of structured application objects, and enable the implementation of the high-level inter-
faces provided by the type structure specification. Therefore, the type structure speci-
fication and the concept of intelligent BLOBs together enable an easy implementation
for abstract data types. type system implementers can be released from the task of in-
terpreting the logical semantics of binary unstructured data, and the component level
access is natively supported by the underlying iBLOB.

4 Representing and Interpreting Structured Application Objects
with Type Structure Specifications

The structures of different application objects can vary. Examples are the structure of
a region (Figure 1) and the structure of a book. We aim at developing a generic plat-
form that accommodates all kinds of hierarchical structures. Thus, the first step is to
explore and extract the common properties of all structuredobjects. Unsurprisingly, the
hierarchy of a structured object can always be represented as a tree. Figure 3a shows
the tree structure of aregion object. In the figure,face[], holeCycle[], and segment[]
represent a list of faces, a list of hole cycles and a list of segments respectively. In the
tree representation, the root node represents the structured object itself, and each child
node represents a component namedsub-object. A sub-object can further have a struc-
ture, which is represented in a sub-tree rooted with that sub-object node. For example,
a region object in Figure 3a consists of a label component anda list of face compo-
nents. Each face in the face list is also a structured object that contains a face label, an
outer cycle, and a list of hole cycles, where both the outer cycle and the hole cycles are
formed by segments lists. Similarly, the structure of a bookcan also be represented as
a tree (Figure 3b).
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Fig. 3.The hierarchical structure of aregionobject and the hierarchical structure of abookobject.

Further, we observe that two types of sub-objects can be distinguished calledstruc-
tured objectsandbase objects. Structured objects consist of sub-objects, and base ob-
jects are the smallest units that have no further inner structure. In a tree representation,
each leaf node is a base object while internal nodes represent structured objects.

A tree representation is a useful tool to describe hierarchical information at a con-
ceptual level. However, to give a more precise description and to make it understandable
to computers, a formal specification would be more appropriate. Therefore, we propose
a generictype structure specificationas an alternative of the tree representation for de-
scribing the hierarchical structure of application objects.

We first introduce the concept ofstructure expressions. Structure expressions define
the hierarchy of a structured object. A structure expression is composed ofstructure
tags (TAGs) and structure tag lists(TAGLISTs). A structure tag (TAG) provides the
declarationfor a single component of a structured object, whereas a structure tag list
(TAGLIST) provides the declaration for a list of componentsthat have the same struc-
ture. The declaration of a TAG, namedtag declaration, is 〈NAME : TYPE〉, where
NAME is the identifier of the tag and the value ofTYPE is eitherSO, which is a flag
that indicates a structured object, orBO, which is a flag that indicates a base object. An
example of astructured object tagis 〈region: SO〉, and〈segment: BO〉 is an example
of a base object tag. We first define a set of terminals that will be used in structure
expressions as constants. Then, we show the syntax of structure expressions.

Terminal Set S= {:=, 〈, 〉, |, [, ] , SO, BO, :}

Expression::= TAG:= 〈TAG| TAGLIST〉+;
TAGLIST ::= TAG[ ]
TAG ::= 〈NAME : TYPE〉
TYPE ::= 〈SO| BO〉
NAME ::= IDENTIFIER

In the region example, we can define the structure of a region object with the fol-
lowing expression:〈region: SO〉 := 〈regionLabel: BO〉〈 f ace: SO〉[ ]. In the expression,
the left side of := gives the tag declaration of a region object and the right side of :=
gives the tag declarations of its components, in this case, the region label and the face
list. Thus, we say the region object isdefinedby this structure expression.

With structure expressions, the type system implementer can recursively define the
structure of structured sub-objects until no structured sub-objects are left undefined.



A list of structure expressions then forms a specification. We call a specification that
consists of structure expressions and is organized following some rules atype structure
specification(TSS) for an abstract data type. Three rules are designed to ensure thecor-
rectnessandcompletenessof a type structure specification when writing structure ex-
pressions: (1) the first structure expression in a TSS must bethe expression that defines
the abstract data type itself (correctness); (2) every structured object in a TSS has to be
defined with one and only one structure expression (completenessanduniqueness); (3)
none of the base objects in a TSS needs to be defined (correctness). By following these
rules, the type system implementer can write one type structure specification for each
abstract data type. Further, it is not difficult to observe that the conversion between a
tree representation and a type structure specification is simple. The root node in a tree
maps to the first structure expression in the TSS. Since all internal nodes are structured
sub-objects and leaf nodes are base sub-objects, each internal node has exactly one cor-
responding structure expression in the TSS, and leaf nodes require no structure expres-
sions. The type structure specification of the abstract datatyperegioncorresponding to
the tree structure in Figure 3a is as follows:

〈region: SO〉 := 〈regionLabel: BO〉〈 f ace: SO〉[ ];
〈 f ace: SO〉 := 〈 f aceLabel: BO〉〈outerCycle: SO〉〈holeCycle: SO〉[ ];
〈outerCycle: SO〉 := 〈segment: BO〉[ ];
〈holeCycle: SO〉 := 〈segment: BO〉[ ];

The next step after specifying the structure is to create andstore the application
object into the database. The TSS provides a workable interface for the type system im-
plementer to create, access and navigate through the object. This higher-level interface
is the abstraction of the iBLOB interface. This abstractionalong with the specifica-
tion, frees the type system implementer from understandingthe underlying data type
iBLOB that is used for finally representing the application object in the database. Nav-
igating through the structure of the object is done by specifying a path from the root to
the node by a string using thedot-notation. For example, to point to the first segment
of the outer cycle of the third face of a region object can be specified by the string
region.face[3].outerCycle.segment[1]. A component number (e.g.,first segment,third
face) is determined by the temporal order when a component was inserted. An impor-
tant point to mention is that the structural validity of a path (e.g., whether an outer cycle
is a subcomponent of a face) can be verified by parsing the TSS.However, the exis-
tence of a third face can only be detected during runtime. Theset of operators which
are defined by the interface are given below:

create :→ SO
get : path→ BO[]
set : path→ bool
set : path× char∗→ bool
baseOb jectCount: path→ int
subOb jectCount: path→ int

An application object can be created by the operatorcreate() which generates an
empty application object. The operatorget(p) returns all base objects at leaf nodes



under the node specified by any valid pathp. Since no data types are defined for the
structured objects in intermediate nodes, these objects are not accessible, and paths to
them are undefined. Hence, paths to intermediate nodes are interpreted differently in the
sense that the operatorget(p) recursively identifies and returns all base objects underp.
The operatorset(p) creates an intermediate component. The operatorset(p,s) inserts
a base object given as a character strings at the location specified by the pathp. The
last two operatorsbaseObjectCount(p) andsubObjectCount(p) return the number of
base objects and the number of sub-objects under a node specified by the pathp. As
an example, for a region object with one face that contains anouter cycle with three
segments, the corresponding code for creating the region object is given below:

region r= create(); r.set(region.regionLabel, ”MyRegion”);
r.set(region. f ace[1]); r.set(region. f ace[1]. f aceLabel, ”Face1”);
r.set(region. f ace[1].outerCycle);
r.set(region. f ace[1].outerCycle.segment[1],seg1);
r.set(region. f ace[1].outerCycle.segment[2],seg2);
r.set(region. f ace[1].outerCycle.segment[2],seg3);

The first line of the code shows how the type system implementer can create a region
object based on the specified type structure specification. The second line creates the
first face and the third line its outer cycle as intermediate components. The following
three lines store the three segmentsseg1, seg2, seg3 as components of the outer cycle.

5 Intelligent Binary Large Objects (iBLOBs)

In this section, we present the conceptual framework for a new database data type called
iBLOB for Intelligent Binary Large Objects. This type enhances the functionality of
traditional binary large objects (BLOBs) in database systems. Our concept also helps to
solve the generality, abstraction and update problems (described in Section 1) that are
exhibited by current approaches (see Section 2) to manage large application objects.
BLOBs serve currently as the only means to store large objects in DBMS. However,
they do not preserve the structure of application objects and do not provide access,
update and query functionality for the sub-components of large objects.iBLOBshelp
to smartly extend traditional BLOBs by preserving the object structure internally and
providing application-friendly access interfaces to the object components. All this is
achieved while maintaining low level access to data and extending existing database
systems using object-oriented constructs andabstract data types(ADTs).

The iBLOB framework consists of two main sections called thestructure index
and thesequence index(Figure 4). The first section contains thestructure indexwhich

comp 2comp 1 ... comp n Indexoffset n...offset 2offset 1 Sequence

Structure Index

Fig. 4. Illustration of an iBLOB object consisting of a structure index and a sequence index.



helps us represent the object structure as well as the base data. The second section
contains thesequence indexthat dictates the sequential organization of object fragments
and preserves it under updates. Since the underlying storage structure of an iBLOB is
provided through a BLOB, which is available in most DBMSs, the iBLOB data type
can be registered as a user-defined data type and be used in SQL.

5.1 iBLOB Structure Index: Preserving Structure in Unstructured Storage

A structure index is a mechanism that allows an arbitrary hierarchical structure to be
represented and stored in an unstructured storage medium. It consists of two compo-
nents for, first, the representation of the structure of the data and, second, the actual data
themselves. The structural component is used as a referenceto access the data’s struc-
tural hierarchy. The mechanism is not intended to enforce constraints on the data within
it; thus, it has no knowledge of the semantics of the data uponwhich it is imposed.
This concept considers hierarchically structured objectsas consisting of a number of
variable-length sub-objects where each sub-object can either be astructured objector
abase object. Within each structured object, its sub-objects reside in sequentially num-
bered slots. The leaves of the structure hierarchy contain base objects.

To illustrate the concept of a structure index, we show an example how to store a
spatial region object with a specific structure in a database. A region data type may be
described by a hierarchical structure as shown in Figure 3a.Consider a region made up
of several faces. If we needed to access the 50th face of a region object using a tradi-
tional BLOB storage mechanism, one would have to load and sequentially traverse the
entire BLOB until the desired face would be found. Further, since the face objects can
be of variable length, the location of the 50th face cannot beeasily computed without
extra support built in to the BLOB. In order to avoid an undesirable sequential traversal
of the BLOB, we introduce the notion ofoffsetsto describe structure. Each hierarchical
level of a structure in a structure index stored in a BLOB is made up of two components
(corresponding to the two components of the general structure index described above).
The first component contains offsets that represent the location of specific sub-objects.
The second component represents the sub-objects themselves. We define offsets to have
a fixed size; thus, the location of theith face can be directly determined by first calcu-
lating the location of theith offset and then reading the offset to find the location of the
face. Figure 5 shows a structured object with internal offsets.

The recursive nature of hierarchical structures allows us to generalize the above de-
scription. Each sub-object can itself have a structure likethe region described above.

offset 1 offset 2 offset n... ...

Region

face 1 face 2 face n

Fig. 5.A structured object consisting ofn sub-objects andn internal offsets
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info label face 1offset 1 offset n ... face n

oCycle hCycle 1 ... hCycle n

Fig. 6. A structured object consisting of a base object and structured sub-objects

Objects at the same level are not required to have the same structure; thus, at any given
level it is possible to find both structured sub-objects and base objects (raw data). For
example, we can extend the structure of a region object so that it is made up of a collec-
tion of faces each of which contains an outer cycle and zero ormore hole cycles, which
in turn are made up of a collection of segments. Segments can be implemented as a pair
of (x,y)-coordinate values. This example is illustrated in terms ofstructured and base
objects in Figure 6 where the top level object represents a region with an information
part, a label, and one of its face sub-objects.

5.2 iBLOB Sequence Index: Tracking Data Order for Updates

Different DBMSs provide different implementations of the BLOB type with varied
functionalities. However, most advanced BLOB implementations support three oper-
ations at the byte level, namely, random read and append (write bytes at end of BLOB),
truncate (delete bytes at end) and overwrite (replace byteswith another block of bytes
of the same or smaller length).

Structured large objects require the ability to update sub-objects within a structure.
Specifically, they requirerandom updateswhich include insertion, deletion and the abil-
ity to replace data with new data of arbitrary size. Examplesare the replacement of a
segment by several segments in a cycle of a region object, or adding a new face. Given
a large region object, updating it entirely for each change in a face, cycle or segment
becomes very costly when stored in BLOBs (update problem). Thus, it is desirable to
update only the part of the structure that needs updating. For this purpose, we present
a novelsequence indexconcept that is based on the random read and data append op-
erations supported by BLOBs Extra capabilities provided byhigher level BLOBs are a
further improvement and serve for optimization purposes. The sequence index concept
is based on the idea of physically storing new data at the end of a BLOB and providing
an index that preserves the logically correct order of data.

Consequently, data will have internal fragmentation and will be physically stored
out-of-order, as illustrated in Figure 7. In this figure, thedata blocks (with start and end

l...mi...j k...l j...k
SequenceIndex:

face 1 face 4 face 3 face 2

i j k l m

Fig. 7. An out-of-order set of data blocks and their corresponding sequence index
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SequenceIndex:

Fig. 8. The initial in-order and defragmented data and sequence index.

byte addresses represented by letters under each boundary)representing faces should
be read in the order 1,2,3,4, even though physically they are stored out-of-order in the
BLOB (we will study the possible reasons shortly). By using an ordered list of physical
byte address ranges, the sequence index specifies the order in which the data should be
read for sequential access. The sequence index from Figure 7indicates that the block
[i . . . j] must be read first, followed by the block[l . . .m], etc.

Based on the general description of the sequence index givenabove, we now show
how to apply it as a solution to the update problem. Assume that the data for a given
structured object is initially stored sequentially in a BLOB, as shown in Figure 8. Sup-
pose further that the user then makes an insertion at position k in the middle of the
object. Instead of shifting data after positionk within the BLOB to make room for the
new data, we append it to the BLOB as block[ j . . . l ], as shown in Figure 9. By modify-
ing the sequence index to reflect the insertion, we are able tolocate the new data at its
logical position in the object.

Figure 10 illustrates the behavior of the sequence index when a block is intended
to be deleted from the structured object. Even though there is no new data to append
to the BLOB, the sequence index must be updated to reflect the new logical sequence.
Because the BLOB does not actually allow for the deletion of data, the sequence index
is modified in order to prevent access to the deleted block[m. . .n] of data. This can
result in internal fragmentation of data in the iBLOB which can be managed using a
specialresequenceoperation shown later in the iBLOB interface.

Finally, Figure 11 illustrates the case of an update where the values of a block of
data[o. . . p] as a portion of block[ j . . . l ] are replaced with values from a new block
[l . . .q]. For this kind of update, it is possible for the new set of values to generate a
block size different from that of the original block being replaced.

iBLOBs enhance BLOBs by providing support for truncate and overwrite opera-
tions at the highercomponent levelof an application object’s structure. Thetruncate
operation in BLOB (delete bytes at end) is enhanced in iBLOB with a removefunction
which can perform deletion of components at any location (beginning, middle or at the
end of structure) as shown in Figure 10. Theoverwrite operation in BLOB (replace

i...k j...l k...j3 2
Index:Sequence

k j li

1

Fig. 9. A sequence index after inserting block[ j . . . l ] at positionk.
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4 231
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Fig. 10.A sequence index after deleting block[m. . .n].

1 5 6 2 4 3

Sequence Index:
i k nm qoj lp

k...mi...k j...o l...q p...l n...j

Fig. 11.A sequence index after replacing block[o. . . p] by block [l . . .q].

byte array with another of same length) is enhanced in iBLOB with a combination of
removeandinsert functions and sequence index adjustments, to perform the overwrite
of components with other components of different sizes as shown in Figure 11.

5.3 The iBLOB Interface

In this section, we present a generic interface for constructing, retrieving and manipu-
lating iBLOBs. Within thisiBLOB interface, we assume the existence of the following
data types: the primitive typeInt for representing integers,Storageas a storage structure
handle type (i.e., blob handle, file descriptor, etc.),Locator as a reference type for an
iBLOB or any of its sub-objects,Streamas an output channel for reading byte blocks of
arbitrary size from an iBLOB object or any of its sub-objects, anddataas a represen-
tation of a base object. Figure 12 lists the operations offered by the interface. We use
the terml-referenced objectto indicate the object that is referred to by a given locator
l. The following descriptions for these operations are organized by their functionality:

– Construction and Duplication: An iBLOB object can be constructed in three dif-
ferent ways. The first constructorcreate() (1) creates an empty iBLOB object. The
second constructorcreate(sh) (2) constructs an iBLOB object from a specific stor-
age structure handleshsuch as a BLOB object handle or a file descriptor. The third
constructorcreate(s) (3) is a copy constructor and builds a new iBLOB object from
an existing iBLOB objects. Similarly, an iBLOB objects2 can also be copied into
another iBLOB objects1 by using thecopy(s1,s2) operator (4).

– Internal Reference: In order to provide access to an internal sub-object of an
iBLOB object, we need a way to obtain the reference of such a sub-object. The
sub-object referencing process must start from the topmosthierarchical level of the
iBLOB object s whose locatorl is provided by the operatorlocateiBLOB(s) (5).
From this locatorl , a next level sub-object can be referenced by its sloti in the
operatorlocate(s, l , i) (6).



create: → iBLOB (1)

create: Storage→ iBLOB (2)

create: iBLOB → iBLOB (3)

copy: iBLOB × iBLOB

→ iBLOB (4)

locateiBLOB: iBLOB → Locator (5)

locate: iBLOB ×Locator× Int

→ Locator (6)

getStream: iBLOB ×Locator

→ Stream (7)

insert : iBLOB ×data× Int

×Locator× Int → iBLOB
(8)

insert : iBLOB × iBLOB

×Locator× Int → iBLOB (9)

remove: iBLOB ×Locator× Int

→ iBLOB (10)

append: iBLOB ×data× Int

×Locator→ iBLOB (11)

append: iBLOB × iBLOB ×Locator

→ iBLOB (12)

length: iBLOB ×Locator→ Int (13)

count : iBLOB ×Locator→ Int (14)

resequence: iBLOB → iBLOB (15)

Fig. 12.The standardized iBLOB interface

– Read and Write: Since iBLOBs support large objects which may not fit into main
memory, we provide a stream based mechanism through the operatorgetStream(s, l)
(7) to consecutively read arbitrary size data from any l-referenced object. The
stream obtained from this operator behaves similarly to a common file output stream.
Other than reading data, the interface allows insertion of either a base objectd of
specified sizez through the operatorinsert(s,d,z, l , i) (8) or an entire iBLOB ob-
ject s1 through the operatorinsert(s,s1, l , i) (9) into any l-referenced object at a
specified sloti. A base objectd such as in the operatorappend(s,d,z, l) (11) or a
iBLOB object s1 such as in operatorappend(s,s1, l) (12) can be appended to an
l-referenced object. This is effectively the same as inserting the input as the last
sub-object of the referenced object. The operatorremove(s, l , i) (10) removes the
sub-object at sloti from the parent component with Locatorl.

– Properties and Maintenance: The actual size of an l-referenced object is obtained
by using the operatorlength(s, l) (13) while the number of sub-objects of the object
is provided by the operatorcount(s, l) (14). Finally, the operatorresequence(s) (15)
reorganizes and defragments the iBLOB objectscollapsing its sequence index such
that it contains a single range. This operation effectivelysynchronizes the physical
and logical representations of the iBLOB object and minimizes the storage space.
Resequence must be initiated whenever the fragmentation ofiBLOBs reaches a
particular predetermined maximum limit and there is available memory for support.

To test functionality, we have implemented the iBLOB data type in three popular
databases: Oracle, Informix and PostgreSQL by using their object-oriented extensions
and programming API. Due to space constraints, these details could not be fully pre-
sented in this paper. However, each operator in the TSS-interface is implemented using



the corresponding iBLOB-interface operator. For e.g., to implementget(region. f ace[1].
outerCycle.segment[1]), we first uselocateiBLOB(5) to get a Locator to the iBLOB,
then uselocate() (6) repeatedly to move across levels and navigate to the required com-
ponent (i.e., first segment). Finally,getStream() (7) retrieves that particular compo-
nent without loading the entire complex object. Other TSS-interface functions likeset,
baseOb jectCountandsubOb jectCountare also implemented in a similar manner.

6 Conclusions

In this paper, we extend databases to natively support complex application objects by
introducing two novel concepts. First, atype structure specification(TSS) helps to cap-
ture and describe the structure of complex application objects. Then, we introduce a
special datatype calledIntelligent Binary Large OBject(iBLOB) that helps to store and
manage complex application objects (i.e., variable length, structured, hierarchical data).
iBLOBs enable the database to internally handle the semantics of structured objects and
provide an interface to operate on them. The combination of TSS and iBLOBs provides
the necessary tools to easily implement type systems in databases and to develop high
level applications using complex objects. Due to space limitations, performance com-
parisons between iBLOBs and other methods for complex data management could not
be shown but will be presented in future work. We also plan to optimize iBLOBs and
provide a versatile approach to type system implementationusing databases.
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