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ABSTRACT
Reasoning about space has been a considerable field of study
both in Artificial Intelligence and in spatial information the-
ory. Many applications benefit from the inference of new
knowledge about the spatial relationships between spatial
objects on the basis of already available and explicit spa-
tial relationship knowledge that we call spatial (relation-
ship) facts. Hence, the task is to derive new spatial facts
from known spatial facts. A considerable amount of work
has focused on reasoning about topological relationships (as
a special and important subset of spatial relationships) be-
tween simple spatial objects like simple regions. There is
a common consensus in the GIS and spatial database com-
munities that simple regions are insufficient to model spa-
tial reality and that complex region objects are needed that
allow multiple components and holes. Models for topologi-
cal relationships between complex regions have already been
developed. Hence, as the next logical step, the goal of this
paper is to develop a reasoning model for them. Further,
no reasoning model considers changes of the spatial fact ba-
sis stored in a database between consecutive queries. We
show that conventional modeling suffers from performance
degradation when the database is frequently changing. Our
model does not assume any geometric representation model
or data structure for the regions. The model is also back-
ward compatible, i.e., it is also applicable to simple regions.

1. INTRODUCTION
Understanding the topological relationships between ob-

jects in space has become a multidisciplinary research issue
involving AI, CAD/CAM systems, cognitive science, com-
puter vision, image databases, linguistics, robotics, GIS, and
spatial databases. From a spatial database and GIS point
of view, topological relationships are necessary as filter con-
ditions for spatial selections and spatial joins as well as for
spatial data retrieval and analysis. In spatial databases and
GIS, we generally deal with a large number of spatial ob-
jects. Hence, it is not uncommon that we do not have all
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possible relationships available between every pair of spatial
objects all the time. This situation can arise either due to
a lack of information or since it is impossible to get all the
relationships. To deal with this problem of a lack of com-
plete knowledge, we need a process through which we can
infer the topological relationship between two spatial objects
where the relationship does not currently exist in the knowl-
edge base. This process is called reasoning. Hence, reason-
ing about topological relationship is a method of inferring
new topological relationships, called spatial facts, between
two spatial objects using the other existing spatial facts in
the knowledge base. For example, given three objects A, B
and C, and given two topological relationships Rx(A,B) and
Ry(B,C), reasoning helps us find out the relationship Rz be-
tween A and C where Rz does not exist in the knowledge
base. This process is called the composition of relationships
and is the most common method of reasoning.

So far, the main focus of the available reasoning models is
to deal with simple regions. But in the real world we often
face the situation where real objects cannot be represented
by simple regions alone. For example, Italy contains the
Vatican as a hole, and the Galapagos islands do not consist
of a single island but rather of a collection of many islands.
These spatial phenomena cannot be represented by simple
regions. The second problem is that the current reasoning
models hardly take the changes of spatial facts into account.
It is natural that often the information is added, deleted or
updated in the databases. So it is important to understand
as well as to consider the effect of such changes while de-
signing a reasoning model.

The main goal of this paper is to develop a reasoning
model for complex regions. The main challenge is to deal
with a large number of possible topological relationships be-
tween two complex regions as well as to deal with a large
number of such regions. Our second goal is to derive a set of
inference rules by which the inference of relationships is per-
formed. Since the type for simple regions is a subset of the
type for complex regions, it is also our goal that the reason-
ing model is able to handle simple regions without requiring
any modification. Finally, we show the effect of the changes
of spatial facts on the reasoning process, and we propose an
algorithm to handle those changes.

We propose a generalized process to infer new relation-
ships between complex regions which is not restricted by the
number of regions as well as changes in the database. The
process has two basic steps. In the first step, we perform
a reasoning process involving three regions and call it local
inference. In the second step, we extend this local inference



to N regions and hence call it global inference.
The remainder of the paper is organized as follows: Sec-

tion 2 discusses related work regarding reasoning models
for simple objects and the topological relationships between
complex objects. Section 3 gives a more detailed view of
the reasoning process. In Sections 4 and 5, we describe the
local and global inference respectively. Section 6 integrates
the two steps and gives an algorithm for the overall rea-
soning process. Section 7 evaluates the performance of the
algorithm. Finally, Section 8 draws some conclusions and
discusses future work.

2. RELATED WORK
In the past, numerous data models have been proposed

with the aim of representing spatial objects in databases
and GIS. Spatial objects embedded in the 2D space can
be either point objects, line objects, or region objects. In
this document we mainly consider complex region objects.
Region objects are two-dimensional spatial objects with an
extent (i.e., both height and width). Each kind of spatial
object can be categorized as either a simple spatial object
[13] or a complex spatial object [15, 16]. A simple region
is topologically equivalent to a closed disc; it does not have
holes. However, a complex region may have multiple com-
ponents, called faces, and may have multiple holes. One
important aspect is that for the reasoning process the spa-
tial objects are only needed as symbolic terms; their geome-
tries are not required. Spatial relationships are subdivided
into directional relationships, topological relationships, and
distance relationships. Our focus is on topological relation-
ships which characterize the relative position of two spatial
objects (e.g., overlap, meet). An important approach for
characterizing the topological relationships between spatial
objects is known as 9-intersection model [7]. By using this
model, the authors in [16] have identified the topological
relationships between any two complex spatial objects irre-
spective of their types. Thirty-three relationships have been
found for two complex regions.
Numerous studies have been done on topological relation-

ships as well as topological reasoning. The reasoning process
tries to infer the unknown relationships from a set of explic-
itly known relationships which are defined by a particular
relationship model. Hence, reasoning models depend on the
underlying relationship models. Researchers from different
domains such as AI, mathematics, GIS and databases, have
been contributing to this field of study. The authors of the
papers [18, 12, 3] tackle this problem with algebraic logic
approaches. The authors in [7] define spatial objects on the
basis of topological set theory and propose the 9-intersection
model as a way to characterize them. Based on topological
set theory, the authors also propose reasoning models for
simple regions [3, 6, 5] and simple regions with holes [20].
In [1] the authors propose a reasoning model taking the con-
cavity of the regions into the account along with their convex
hulls. In most cases, the inferred relationship between spa-
tial objects may not be unique, i.e., the inferred relationship
can be a disjunction of several basic relationships. Based on
this observation, the authors of [9, 10] propose hierarchical
models for topological reasoning.
All of the above mentioned studies mainly focus on lo-

cal inference (i.e., the composition of relationships involving
three objects by means of inference rules). It is well under-
stood that local inference is an essential and basic step of the

reasoning process but without global inference the process
is not complete. The reason behind the larger focus on local
inference is that global inference is a constraint satisfaction
problem (CSP) [4, 11, 19, 2] which is an extensively studied
topic and is independent of the local inference process. The
authors of [12, 17, 14] have studied the issues related to con-
straint satisfaction for spatial objects such as the complexity
and the tractability. So far, the lowest complexity of CSP
algorithms is O(n3) [11, 19, 2]. All of these CSP algorithms
operate on a static knowledge base. That is, given a BSCN,
the algorithm is able to infer relationships between any pair
of complex regions. But over time, the existing facts may
change and the CSP algorithms are not designed to handle
changes. To the best of our knowledge, none of the reason-
ing models deals with changes of the spatial facts, and our
work is motivated by this issue.

3. OVERVIEW OF THE REASONING PRO-
CESS

The first step of the reasoning process is the local infer-
ence involving three regions in the form of Rx(A,B) and
Ry(B,C). Here, Rx and Ry are the spatial facts between
the complex regions A and B as well as B and C. The goal
is to find the relationship Rz(A,C). This local inference
is carried out by a process called composition of relation-
ships by means of a set of inference rules. It is important
to note that the composition of relationships does not de-
pend on the spatial features (like the extent) of the regions.
Therefore, the composition of relationships can be denoted
as Rx ◦Ry ⇒ Rz. Local inference alone is not enough for in-
ferring relationships between two complex regions. Consider
the chain R1(A,B), R2(B,C), R3(C,D), R4(D,E) of topo-
logical relationships among the five regions A, B, C, D, and
E. In this situation, local inference alone is not sufficient to
infer the relationship between A and E because an interme-
diate object is required that is in relationship to both A and
E. In our example, such an intermediate region does not
exist. Thus, global inference comes into play which makes
use of the composition of relationships to infer relationships
between any two regions in the knowledge base.

An important observation is that global inference is or-
thogonal to local inference. That is, global inference can
employ any algorithm to infer relationships globally as long
as the composition of relationships is available. Unsurpris-
ingly, global inference is a constraint satisfaction problem. A
constraint satisfaction problem (CSP) is defined as a triple
(X,D,C), whereX is a set of variables, D is a domain of val-
ues, and C is a set of constraints. Every constraint is in turn
a pair (t, R), where t is a tuple of variables and R is a rela-
tion. The CSP can be viewed as a directed graph, where the
nodes are the variables and the edges between two variables
are the relations or the constraints. This directed graph is
also called constraint network. In our case, the relations
are all binary topological relationships and the variables are
spatial objects (i.e., regions); we call this graph represen-
tation binary spatial constraint network (BSCN ). The class
of algorithms for global inferencing by using BSCN is based
on a path consistency procedure. A pair of variables is path
consistent with a third variable if each consistent evaluation
of the pair can be extended to the other variable in such a
way that all binary constraints are satisfied. Formally, the
variables A and C are path consistent with B if there is
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Figure 2: (a) A complex region with its faces and
holes, and (b) its interior, boundary, and exterior.

a relation R1(A,C) that satisfies the binary constraint be-
tween A and C and if there are two relations R2(A,B) and
R3(B,C) that satisfy the constraint between A and B and
between B and C, respectively. A simple observation tells us
that path consistency can be achieved through composition
of relationships. The algorithm applies the path consistency
procedure to all combinations of nodes in the BSCN until
no new relationships can be inferred. An important point
is that, given a partially observed knowledge base, the path
consistency algorithms derive the complete knowledge, i.e.,
the relationships between every pair of objects. That is,
after running the global inference algorithm the knowledge
base becomes complete and it takes O(1) time to find the
relationship(s) between any pair of complex regions.

4. LOCAL INFERENCE
The local inference process (Figure 1) takes the two topo-

logical relationshipsRx(A,B) andRy(B,C), composes them,
and infers the relationship(s)RZ(A,C). Since a 9-intersection
matrix can uniquely characterize each topological relation-
ship, the input of the local inference consists of the two
9-intersection matrices, and the output is a set of inferred
relationships. In a first step, the corresponding set rela-
tionships (i.e., subset relationships, empty/nonempty inter-
sections) between the interiors of the regions are evaluated
from the 9-intersection matrices. In a second step, the infer-
ence rules are applied to find out the 9-intersection predicate
values between A and C. In a last step, the inferred rela-
tionships are derived from the predicate values.

4.1 Set Relationships between The Interiors
Point set topology characterizes each spatial object by

three mutually exclusive point sets in the topological space
R2. These sets are the interior (Ao), the boundary (∂A),
and the exterior (A−) for any spatial object A (Figure 2b).
The 9-intersection model uses nine predicates to check the
nine intersections of these point sets provided by two spa-
tial objects A and B for non-emptiness. Each topological
relationship between any two spatial objects is character-

ized by a unique combination of nine Boolean values. The
9-intersection predicates are arranged in a 9-intersection ma-
trix (Figure 3a).

On the other hand, the interior, boundary, and exterior
of a spatial object are uniquely defined and disjoint from
each other [16]. Therefore, it is sufficient to specify any of
these three sets to uniquely characterize a region object. In
this document we consider the interior of a complex region
to uniquely characterize it. Hence, for each topological rela-
tionship, there is a set relation between the interiors of the
two complex regions. That is, either the interior of A is a
subset of or a superset of or equal to or disjoint to or overlaps
the interior of B. In [7] the authors show a way to find out
the set relationship between any two components of a region
object from the 9-intersection matrix by using the topolog-
ical properties of the spatial regions. We employ the same
technique to find out the set relation between the interiors
of the two participating regions of a topological relationship.

4.2 Inference Rules
From set theory, two non-empty sets X and Y must have

one of the following five relations: (i) X is a proper subset
of Y , (ii) X is equal to Y , (iii) Y is a proper subset of X,
(iv) X and Y have some common and some different ele-
ments, and (v) X and Y do not have any common element.
The fourth relation, we call it overlap, denotes that two sets
have common elements but none of them is the proper sub-
set of the other. We extend these five relations to eight by
adding special cases to the relations (i), (iii), and (v) using
the spatial properties. Consider X and Y as the interiors of
two regions A and B respectively. Then relation (i) states
that A is completely inside B. There can be two special
cases of this scenario: (a) A is inside B and their bound-
aries touch, and (b) A is inside B and their boundaries do
not touch. Similarly, these two special cases also hold for
the relations (iii) and (iv).

Let the symbol ⊂ denote the proper subset relation. The
symbol ◦ is to denote the predicate for overlap, e.g., A◦ ◦
B◦ ⇔ (A◦ ∩ B◦ ̸= ∅ ∧ A◦ − B◦ ̸= ∅ ∧ B◦ − A◦ ̸= ∅).
The predicate for a non-empty intersection, e.g., A◦ ∩B◦ ̸=
∅, is denoted by A◦B◦, and the predicate for an empty
intersection, e.g., A◦∩B◦ = ∅, is denoted by ¬A◦B◦. Hence,
the eight relations between the interiors of two region objects
are the following:

1. A◦ ⊂ B◦ ∧ ¬∂A∂B
2. A◦ ⊂ B◦ ∧ ∂A∂B
3. A◦ = B◦

4. A◦ ◦B◦

5. ¬A◦B◦ ∧ ∂A∂B
6. ¬A◦B◦ ∧ ¬∂A∂B
7. B◦ ⊂ A◦ ∧ ∂A∂B
8. B◦ ⊂ A◦ ∧ ¬∂A∂B

The relations 1 and 2 are two special cases of the origi-
nal relation (i). Similarly, the relations 5 and 6 as well as
the relations 7 and 8 are special cases of the original rela-
tions (iii) and (v). Unsurprisingly, these five basic and eight
extended relations correspond to the RCC-5 and RCC-8 ap-
proaches [13, 14]. Most importantly, these eight relations
hold for any type of region objects (i.e., simple, complex)
because a simple region is nothing but a single component,
complex region without any hole. On the other hand, since
we consider the interior as a whole, which means the inte-
rior of a complex region is the union of the interiors of its all
faces, it does not matter how many holes and components
are contained in a complex region. Since these eight relations
completely characterize the relations between the interiors of
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Figure 3: (a) 9-Intersection Matrix, (b) complex regions A and B meet, (c) Rmeet(A,B).
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Figure 4: The interiors of A and C: (a) intersects,
(b) does not intersect.

two complex regions, any relationship between two complex
regions A and B must include exactly one of these relations.
Therefore, if we have Rx(A,B) and Ry(B,C) then by the
transitivity property, the interiors of A and C must belong
to exactly one of the 8 · 8 = 64 configurations of these rela-
tions. That is, for each relation between A and B, there are
eight possible relations between B and C which gives us 64
configurations.
For each of these 64 configurations, we determine the 9-

intersection predicate values between A and C. As an ex-
ample, for the configuration A◦ ⊂ B◦ ∧ ¬∂A∂B and B◦ ⊂
C◦ ∧ ¬∂B∂C, by applying simple set theory, we get A◦ ⊂
B◦ ∧ B◦ ⊂ C◦ ⇒ A◦ ⊂ C◦ ⇒ A◦ ∩ C◦ ̸= ∅. This means
for the configuration of A and B and of B and C that the
interior-interior intersection between A and C is always
true. Similarly, for the same configuration we can prove
that the interior-exterior intersection between A and C is
always false. We know that the three components (i.e., inte-
rior, exterior and boundary) of a region object are mutually
exclusive (i.e., C◦∩C− = ∅). Hence, A◦ ⊂ B◦∧B◦ ⊂ C◦ ⇒
A◦ ⊂ C◦ ∧ (C◦ ∩ C− = ∅) ⇒ A◦ ∩ C− = ∅. On the other
hand, for the configuration A◦ ◦ B◦ ∧ B◦ ◦ C◦, we cannot
say certainly whether A◦∩C◦ is empty or nonempty, which
means the outcome of A◦ ∩ C◦ is unknown. We can prove
this statement by the two scenarios described in Figure 4
where for this same configuration we get different interior-
interior intersection values between A and C.
Based on the above observations, for each configuration

we can determine the values true, false, or unknown of all
9-intersection predicates between A and C. We do not need
to determine the exterior-exterior intersection because it
is always true. Hence, we define the remaining eight 9-
intersection predicates by three sets of rules that specify for
which configuration the predicate is supposed to yield cer-
tainly true, certainly false, and unknown. By applying some
simple propositional logic reduction techniques and set the-
ory notations (e.g., by combining ⊂ and = to ⊆), we obtain
the sets of inference rules for all 9-intersection predicates
indexed by P1 to P9 in Figure 5.
The proofs of these rules are performed by simple set the-

ory and by proofs by counter-example and drawing as shown

in Figure 4. The proofs of the rules are not given in this doc-
ument due to space constraints. However, the completeness
of this set of rules follows from the formulation of the rules.
Two regions must have exactly one of the eight interior-
interior set relations for any topological relationship, and
after the composition A and C must satisfy one of the 64
configurations. Since the inference rules take each config-
uration into account, these rules never miss any scenario
for which it cannot determine the 9-intersection predicates.
Thus, the inference rules are complete by formulation.

4.3 Relationship Identifying Process
We evaluate the 9-intersection predicates (called evaluated

predicates) of the topological relationship to be inferred by
applying the inference rules defined in the previous subsec-
tion. These evaluated predicates have slightly different char-
acteristics than the usual 9-intersection predicates because
evaluated predicates may have the value unknown whereas
usual 9-intersection predicates always have determinate val-
ues (i.e., either true or false). This is not surprising since
the inferred relationship can be unique (i.e., a single ba-
sic relationship) or a disjunction of basic relationships. If
the inferred relationship is unique, then all the evaluated
predicate values are determinate. On the other hand, if the
inferred relationship is a disjunction of basic relationships,
then at least one of the evaluated predicates must have the
value unknown. In fact, the evaluated predicates have de-
terminate values only for those predicates that agree for all
the relationships in that disjunction. Since we may have an
indeterminate value, we need one more step to identify the
relationship(s) from the evaluated predicates.

A simple brute force approach to finding out the inferred
relationship is to compare the evaluated matrix against each
of the 33 relationship matrices, predicate by predicate. The
problem is that it takes too many comparisons. Since the
exterior-exterior intersection is always true, we have to com-
pare eight of these evaluated predicates for each matching
which means 33 · 8 = 264 comparisons are required in the
worst case.

To reduce the number of comparisons we build a decision
tree of these 33 relationships. Table 1 shows all 33 possible
relationship matrices [16]. We recursively divide the rela-
tionship space based on a predicate value at each level of
the tree until we reach a single relationship. For example,
18 relationships (matrices 1 to 18 in Table 1) have false as
their interior-boundary intersection value. Thus, we divide
the relationship space so that the relationships 1 to 18 are
on one side and the relationships 19 to 33 are on the other
side. Next if we look into the relationships 19 to 33, we
find that the relationships 19 to 26 represented by the ma-
trices 19 to 26 have the value false for the boundary-interior
predicate and that the other relationships have the predicate
value true. Therefore, we again divide the relationship space



P1 : A◦C◦ =

true Ao = Bo ∧ Bo = Co ∨
AoBo ∧ Bo ⊂ Co ∨
BoCo ∧ Bo ⊂ Ao ∨
¬AoBo ∧ ∂A∂B ∧ B◦ ⊂ C◦ ∧ ¬∂B∂C ∨
¬BoCo ∧ ∂B∂C ∧ B◦ ⊂ A◦ ∧ ¬∂A∂B

false A◦ ⊆ B◦ ∧ ¬B◦C◦ ∨
¬A◦B◦ ∧ C◦ ⊆ B◦

unknown otherwise

P2 : A◦∂C =

true (C◦ ⊂ B◦ ∨ C◦ ◦ B◦) ∧ B◦ ⊆ A◦ ∨
C◦ = B◦ ∧ B◦ ⊂ A◦ ∧ ¬∂B∂A

false C◦ ⊆ B◦ ∧ ¬B◦A◦ ∨
(¬C◦B◦ ∨ B◦ ⊆ C◦) ∧ A◦ ⊆ B◦

unknown otherwise

P3 : A◦C− =

true C◦ ⊆ B◦ ∧ ¬(A◦ ⊆ B◦) ∨
(C◦ ⊂ B◦ ∨ B◦ ◦ C◦) ∧ A◦ = B◦ ∨
B◦ ◦ C◦ ∧ (B◦ ⊂ A◦ ∨ A◦ ⊂ B◦) ∨
¬B◦C◦ ∧ A◦B◦ ∨
¬B◦C◦ ∧ ¬∂B∂C ∧ ¬A◦B◦ ∧ ∂A∂B ∨
C◦ ⊂ B◦ ∧ ¬∂B∂C ∧ A◦ ⊂ B◦ ∧ ∂A∂B ∨
B◦ ⊂ C◦ ∧ ∂B∂C ∧ B◦ ⊂ A◦ ∧ ¬∂A∂B

false Bo ⊆ Ao ∧ C◦ ⊆ B◦

unknown otherwise

P4 : ∂AC◦ =

true (A◦ ⊂ B◦ ∨ A◦ ◦ B◦) ∧ B◦ ⊆ C◦ ∨
A◦ = B◦ ∧ B◦ ⊂ C◦ ∧ ¬∂B∂C

false A◦ ⊆ B◦ ∧ ¬B◦C◦ ∨
(¬A◦B◦ ∨ B◦ ⊆ A◦) ∧ C◦ ⊆ B◦

unknown otherwise

P5 : ∂A∂C =

true A◦ = B◦ ∧ B◦ = C◦ ∨
A◦ = B◦ ∧ (B◦ ⊂ C◦ ∨ C◦ ⊂ B◦ ∨ ¬B◦C◦) ∧ ∂B∂C ∨
B◦ = C◦ ∧ (B◦ ⊂ A◦ ∨ A◦ ⊂ B◦ ∨ ¬A◦B◦) ∧ ∂A∂B

false Ao ⊂ Bo ∧ ¬∂A∂B ∧ (B◦ ⊆ C◦ ∨ ¬BoCo) ∨
Ao ⊂ Bo ∧ ∂A∂B ∧ (B◦ ⊆ C◦ ∨ ¬BoCo) ∧ ¬∂B∂C ∨
Co ⊂ Bo ∧ ¬∂B∂C ∧ (B◦ ⊆ A◦ ∨ ¬AoBo) ∨
Co ⊂ Bo ∧ ∂B∂C ∧ (B◦ ⊆ A◦ ∨ ¬AoBo) ∧ ¬∂A∂B ∨

unknown otherwise

P6 : ∂AC− =

true C◦ ⊆ B◦ ∧ ¬(A◦ ⊆ B◦) ∨
(A◦ ⊂ B◦ ∨ A◦ ◦ B◦ ∨ (¬A◦B◦ ∧ ¬∂A∂B))

∧B◦ = C◦ ∨
¬B◦C◦ ∧ A◦ ⊂ B◦ ∨
¬B◦C◦ ∧ ¬∂B∂C ∧ (¬A◦B◦ ∨ B◦ ⊂ A◦)

∧∂A∂B ∨
C◦ ⊂ B◦ ∧ ¬∂B∂C ∧ A◦ ⊂ B◦ ∧ ∂A∂B ∨
B◦ ⊂ C◦ ∧ ∂B∂C ∧ B◦ ⊂ A◦ ∧ ¬∂A∂B

false Bo ⊆ Ao ∧ C◦ ⊆ B◦

unknown otherwise

P7 : A−C◦ =

true A◦ ⊆ B◦ ∧ ¬(C◦ ⊆ B◦) ∨
(A◦ ⊂ B◦ ∨ A◦ ◦ B◦) ∧ B◦ = C◦ ∨
A◦ ◦ B◦ ∧ (B◦ ⊂ C◦ ∨ C◦ ⊂ B◦) ∨
¬A◦B◦ ∧ B◦C◦ ∨
¬A◦B◦ ∧ ¬∂A∂B ∧ ¬B◦C◦ ∧ ∂B∂C ∨
A◦ ⊂ B◦ ∧ ¬∂A∂B ∧ C◦ ⊂ B◦ ∧ ∂B∂C ∨
B◦ ⊂ A◦ ∧ ∂A∂B ∧ B◦ ⊂ C◦ ∧ ¬∂B∂C

false Bo ⊆ Ao ∧ C◦ ⊆ B◦

unknown otherwise

P8 : A−∂C =

true A◦ ⊆ B◦ ∧ ¬(C◦ ⊆ B◦) ∨
(A◦ ⊂ B◦ ∨ A◦ ◦ B◦ ∨ (¬A◦B◦ ∧ ¬∂A∂B))

∧B◦ = C◦ ∨
¬A◦B◦ ∧ C◦ ⊂ B◦ ∨
¬A◦B◦ ∧ ¬∂A∂B ∧ (¬B◦C◦ ∨ B◦ ⊂ C◦)

∧∂B∂C ∨
A◦ ⊂ B◦ ∧ ¬∂A∂B ∧ C◦ ⊂ B◦ ∧ ∂B∂C ∨
B◦ ⊂ A◦ ∧ ∂A∂B ∧ B◦ ⊂ C◦ ∧ ¬∂B∂C

false Bo ⊆ Ao ∧ C◦ ⊆ B◦

unknown otherwise

P9: A− C− = true

Figure 5: Inference rules for the predicates of the 9-intersection matrix.
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Figure 6: Decision tree of the relationship space for complex regions.



Matrix 10 0 1
0 0 1
1 1 1


Matrix 20 0 1
0 1 0
1 1 1


Matrix 30 0 1
0 1 1
1 0 1


Matrix 40 0 1
0 1 1
1 1 1


Matrix 51 0 0
0 1 0
0 0 1


Matrix 61 0 0
0 1 0
1 1 1


Matrix 71 0 0
1 0 0
1 1 1


Matrix 81 0 0
1 1 0
1 0 1


Matrix 91 0 0
1 1 0
1 1 1


Matrix 101 0 1
0 1 0
1 1 1


Matrix 111 0 1
0 1 1
0 0 1


Matrix 121 0 1
0 1 1
1 0 1


Matrix 131 0 1
0 1 1
1 1 1


Matrix 141 0 1
1 0 1
1 1 1


Matrix 151 0 1
1 1 0
1 0 1


Matrix 161 0 1
1 1 0
1 1 1


Matrix 171 0 1
1 1 1
1 0 1


Matrix 181 0 1
1 1 1
1 1 1


Matrix 191 1 1
0 0 1
0 0 1


Matrix 201 1 1
0 0 1
1 1 1


Matrix 211 1 1
0 1 0
0 0 1


Matrix 221 1 1
0 1 0
1 0 1


Matrix 231 1 1
0 1 0
1 1 1


Matrix 241 1 1
0 1 1
0 0 1


Matrix 251 1 1
0 1 1
1 0 1


Matrix 261 1 1
0 1 1
1 1 1


Matrix 271 1 1
1 0 0
1 1 1


Matrix 281 1 1
1 0 1
1 0 1


Matrix 291 1 1
1 0 1
1 1 1


Matrix 301 1 1
1 1 0
1 0 1


Matrix 311 1 1
1 1 0
1 1 1


Matrix 321 1 1
1 1 1
1 0 1


Matrix 331 1 1
1 1 1
1 1 1



Table 1: 33 possible topological relationships between two complex regions.

where relationship 19 to 26 is on one side and relationships
27 to 33 are on the other side. We continue this process
until there is only one relationship in a leaf node. At each
level, we divide the relationship space into half as close as
possible to attain minimum average path length from the
root to the leaf nodes. Since, there are 33 relationships a
balanced binary tree should have the height ⌈log2 33⌉ = 6.
Our decision tree also has the height six. Though, this tree
is not unique but this tree has the minimum average path
length. The complete decision tree is shown in Figure 6.
Each inner node has two entries. The entry inside a node
describes the current relationship space that is considered,
and the entry above the node denotes the predicate that has
to be considered to further divide the current relationship
space.
With the help of this tree, we design a recursive algorithm

IdentifyRelationship (Figure 7) for identifying the inferred
relationship. The input of the algorithm is the decision tree
T and the 9-intersection matrix (IM) which is the evaluated
matrix. The output is the inferred relationship (R). At each
node, starting from the root, the value of the predicate as-
signed to that node is retrieved from the evaluated matrix
and checked. Depending on the value, we follow either the
left, right, or both subtrees. This process recursively fol-
lows down to the tree until a leaf node is reached. If all the
evaluated predicates have determinate values (i.e., true or
false), only one leaf node is reached. Otherwise, if any pred-
icate has an indeterminate value (i.e., unknown), more than
one leaf node is found. In this case, the inferred relation-
ship is the disjunction of all the corresponding relationships
represented by those leaf nodes. The maximum height of
this decision tree is 6. This means if all the evaluated pred-
icates have determinate values, in the worst case it would
take 6 comparisons instead of 264 comparisons, which is a

97% improvement. Since evaluated predicates can have in-
determinate values, we may end up searching through the
whole tree in the worst case. The required number of com-
parisons to search through the whole tree is equal to the
number of the inner nodes. The decision tree that we show
in Figure 6 has 32 inner nodes. Consequently, 32 instead of
264 comparisons are sufficient which is an improvement of
88%.

5. GLOBAL INFERENCE
As we have already discussed in Section 3, a well accepted

way of carrying out global inference is by means of path
consistency algorithms. The first problem of this approach
is the high complexity. Since such an algorithm generates
a complete knowledge base, it is required to run only once
at the beginning. One could argue that the higher runtime
can be counted as pre-processing time and that it is a one
time overhead. This argument holds when the database is
static or changes rarely. If the database changes frequently,
the runtime of the algorithm becomes a big overhead. For
example, if a new object is added to the database then the
algorithm should run again with this new information. The
same argument holds if there is a change in any relationship
because that change may cause other relationships to adjust.
This means the algorithm should run to propagate those
updates. In case of the deletion of an object, only the object
and the emanating relationships from it have to be deleted.
Therefore, the O(n3) overhead is incurred almost every time
when there is a change, and this becomes worse when the
database is large (i.e., n is large).

The second problem arises in the case of answering com-
plex queries. For example, assuming there are two regions A
and C describing areas affected by two different earthquakes.
We want to know if there is any part of state S which was



algorithm IdentifyRelationship
(1) input: Decision tree T := (V,E)
(2) Intersection matrix IM
(3) output: Inferred relationship R
(4) begin
(5) Step 1: Start with the root ∈ T
(6) Step 2: At each node check the value of the evaluated predicate.
(7) Step 2a: If the predicate value is 0, then follow the left subtree.
(8) Step 2b: If the value is 1, then follow the right subtree.
(9) Step 2c: If the value is unknown, then follow both subtrees.

(10) Step 3: Repeat Step 2 until the leaf nodes are reached in all branches.
(11) Step 4: If a single leaf is found, then return the corresponding relationship
(12) else return the disjunction of all corresponding relationships.

end IdentifyRelationship

Figure 7: The algorithm IdentifyRelationship.

hit by both earthquakes. The answer can be obtained by
looking at the topological relationship between the intersec-
tion of A and S as well as the intersection of C and S. Let
the intersections be denoted by I1 and I2 respectively. Our
goal is to find the relationship between these two regions.
For this purpose, we need to add these two regions as two
nodes in the BSCN and run the path-consistency algorithm.
The algorithm gives us not only the relationship between
I1 and I2 but also the relationships between I1 and all the
other nodes as well as the relationships between I2 and all
the other nodes. But we do not need these extra relation-
ships. Hence, the whole procedure becomes quite inefficient.
Moreover, I1 and I2 are temporary regions only and are
thrown out of the BSCN after the query execution. When
those temporary regions are thrown out, the BSCN must
revert to its previous state. This means we need to save the
previous state of the BSCN when any such complex query
is posed. Based on these observations, we can argue that
complete knowledge may not be desirable in some cases and
that path consistency algorithms are not designed to handle
database changes. Hence, our goal is to develop a different
runtime strategy to carry out global inference.
Three scenarios can arise when a query is made to find

out the topological relationship between two regions: (i) the
relationship is already known which means no reasoning is
required, (ii) no relationship is available and there are no
intermediate nodes through which we can infer the relation-
ship, and (iii) no relationship is available but there are some
intermediate nodes through which we can infer the relation-
ship. In terms of a graph, these three scenarios are equiv-
alent of having (i) a direct edge between the two nodes,
(ii) no path between the two nodes, and (iii) at least one
path between the nodes respectively. The first scenario is
straightforward so that we have only to be concerned about
the other two scenarios. It is very important to identify
whether it is possible to infer knowledge between two given
regions. The reasoning procedure is a costly process. If we
could anticipate that the inference of new knowledge be-
tween two complex regions is impossible before starting the
procedure, it would save us time and resources. But sur-
prisingly the solution is straightforward. Since the BSCN is
a graph, a simple path finding algorithm that assumes one
of the two regions as the source and the other one as the
destination can answer this question. A necessary condi-
tion for reasoning is that there is a path between the nodes

A

B C

D

E

R1

R2

R4

R R3

Rx

Ry

Figure 8: A chain of relationships.

representing the two regions.
Therefore, the first step is to run a path finding algorithm.

A path between two target nodes through a set of interme-
diate nodes corresponds to the chaining example that we
described before in the Introduction. Figure 8 describes
the scenario where A and E are the target nodes and B,
C, and D are the intermediate nodes. The known rela-
tionships are R1(A,B), R2(B,C), R3(C,D), and R4(D,E),
and our goal is to infer R(A,E). We can solve this long
chain of relationships by simplifying it into a series of com-
positions of relationships involving three nodes. Referring
to Figure 8, we first compose R1(A,B) and R2(B,C) to
get Rx(A,C). Then we compose Rx(A,C) and R3(C,D)
to obtain Ry(A,D). Finally, by composing Ry(A,D) and
R4(D,E), we get R(A,E). In the AI domain, this process
is known as forward chaining.

Intuitively, shortest path algorithms are a good choice for
a path finding algorithm because they can give us the path
with the minimum number of intermediate nodes; this might
ensure a lower processing time. However, let us consider a
configuration with two chains (paths). First, we assume
that A overlaps B and B overlaps C. Second, we assume
that A disjoint D, D contains E, and E contains C (Fig-
ure 9). From the first chain the inferred relationship between
A and C is the universal relationship, i.e., the disjunction
of all possible relationships. But from the second chain the
inferred relationship between A and C is disjoint. Though
both results are correct, the second, longer chain gives us
the more specific and thus better answer. A similar exam-
ple can be shown where the shorter path gives us a more
specific and thus better answer. In fact, this shows that



A

Figure 9: Multiple chains of relationships.

there is no relation between the length of the path and the
more specific answer. This means that by considering one
path, we may not obtain the most specific answer. Hence,
we have to consider all possible paths, and the intersections
of all inferred relationships obtained through these paths
should give us the most specific relationship. The problem
is that in the worst case the number of all simple paths
between two nodes in a graph is n! when the graph is com-
plete. Interestingly, this worst case scenario is actually good
for the reasoning process because we don’t need any infer-
ence when the knowledge base is complete. If the graph is
sparse then the number of paths between any nodes may
be much lower depending on the configuration of the graph.
Based on this observation, an alternative heuristic solution
is to consider k paths instead of all simple paths. If k is
large then it is possible that this heuristic may give us the
most specific result. We choose a k-shortest path algorithm
which is a generalization of the shortest path problem and
determines k paths, instead of one, in an increasing order of
length. The length, in our case, is measured as the number
of hops from source to destination which means the edges
of the BSCN are of equal weight which means we treat all
the relationships equally. The worst case complexity for the
k-shortest simple path algorithm is O(m + n logn + k) [8]
where n is the number of nodes and m is the number of
edges. If we choose k = cn where c is a positive integer then
the complexity becomes O(n logn) for n logn >= m.

6. AN ALGORITHM FOR REASONING BE-
TWEEN COMPLEX REGIONS

So far, we have described the two basic steps of the reason-
ing process. In this section, we integrate these steps which
give us a generalized conceptual model for reasoning as well
as a complete picture of our work. The algorithm is also
the starting point of the implementation of this conceptual
model. We employ the k-shortest simple path algorithm and
assume that k is equal to the number of nodes in the BSCN.
The inputs of the algorithm ReasoningBetweenComplexRe-
gions (Figure 10) are the BSCN G, a matrix M , which stores
the existing relationships, and the two complex regions α
and β for which we infer the relationship. The matrix M
is indexed by (i, j) which means the topological relation-
ship between the complex objects i and j is stored in the
matrix entry Mi,j . The output of the algorithm is the in-
ferred relationship. There is a simple check (line 7) to find
out whether the relationship already exists or not. If the
relationship already exists, we simply return this relation-
ship and no reasoning is required. The reasoning procedure
has two loops. The outer loop (lines 9 to 20) executes a
k-shortest path algorithm. Each time when we get a new
path (i.e., pα,β), the inner loop (lines 13 to 17) is executed.

This inner loop executes the forward chaining process. In
this loop, the composition of relationships is performed in
three steps. First, the set relations between the interiors
of the regions under consideration are being evaluated (line
14). Then, the evaluation of the 9-intersection predicates
by means of the inference rules is performed (line 15), and
finally the inferred relationship is obtained by passing those
evaluated predicates to the relationship identifying process
(line 16). In order to find out the most specific result, we
take the intersection of all inferred relationships which are
obtained through different paths (line 18). The complexity
of the inner loop depends on the length of the chain because
applying the inference rules and the relationship identifying
process requires a constant amount of time. In a graph the
maximum path length between any nodes can be |V | − 1.
Hence, the time complexity of the inner loop is O(n). Since
the complexity of the outer loop is O(n logn), this gives
us the total complexity of O(n2 logn). This complexity is
lower than the complexity O(n3) of the original BSCN path-
consistency algorithm. Though the reduction of the com-
plexity is not dramatic, the main advantage is that we only
need to run this algorithm when a query is fired. Therefore,
this approach can save a lot of overhead for large dynamic
databases. It also solves the complex query problem be-
cause it only computes the relationship of the target objects
without modifying any other relationships in the database.

7. SIMULATION AND RESULTS
The performance of the heuristic depends on the percent

of time the heuristic is able to find the most specific relation-
ship between two regions. Since we consider k paths, instead
of all paths, between two nodes representing the two regions,
it is possible that we might miss the path which could give
us the most specific relationship. Let us assume that the
number of paths in a BSCN between any two nodes is E. If
k ≥ E, then we can surely say (i.e., with probability p = 1)
that the heuristic gives us the most specific result. On the
other hand, if k < E then the probability of obtaining the
most specific relationship is p = k/E since all the edges have
equal weights. We generate a random graph which repre-
sents the BSCN. The number of edges of each node is power
law distributed between 1 and n, where n is the number
of nodes in the graph. The reason is that the edges repre-
sent the information available about the nodes. In practice,
we have a lot of information for a few regions, a reasonable
amount of information for many regions, and less informa-
tion about the rest of the regions. This phenomenon is cap-
tured by the power law distribution. We run the simulation
for different sizes of databases and observe the performance
of the heuristic by varying k. At each run, the performance
is measured by averaging the p for all possible pairs of nodes.
The number k of considered paths is a constant multiple of
the number of nodes, i.e., k = cn to keep the complexity of
the k-shortest path bounded to O(n logn). Figure 11 shows
that the performance of the heuristic decreases with the in-
crease of the database size, which is expected. Figure 11
also shows that for a fixed database size, the performance
increases if we consider more paths, i.e., if we increase c.
For small databases such as 10 ≤ n ≤ 50, the heuristic is
able to find the most specific result more than 90% of time
which is considered to be good performance by a heuristic.
The heuristic performs reasonably well (i.e., above 80%) in
case of medium sized databases with 50 ≤ n ≤ 300. As



algorithm ReasoningBetweenComplexRegions
(1) input: BSCN G := (V,E)
(2) Matrix M keeping the topological relationship between two complex regions
(3) α, β ∈ V representing complex regions
(4) output: The inferred relationship R(α, β) between nodes (complex regions) α and β
(5) begin
(6) if Mα,β ̸= null then
(7) return Mα,β

(8) k := 0
(9) repeat

(10) pα,β := find the next best path from α to β in G
(11) // pα,β is a list of nodes from G that starts with α, ends with β and
(12) // includes the intermediate nodes
(13) for each i in intermediate nodes from pα,β

(14) Si:=Evaluate the set relations between the interiors from the 9IM of Mα,i,Mi,i+1

(15) IM :=Evaluate 9-intersection predicates by means of inference rules(Si)
(16) Rt(α, i+ 1) := IdentifyRelationship(IM )
(17) endfor
(18) R(α, β) := R(α, β) ∩Rt(α, β)
(19) k := k + 1
(20) until there are no paths from α to β or k = |V |
(21) return R(α, β)

end ReasoningBetweenComplexRegions

Figure 10: The algorithm ReasoningBetweenComplexRegions.

the number of nodes grows beyond 300 nodes, the heuristics
does not perform well when c ≤ 10. But we see that signifi-
cant performance gain can be obtained by considering more
paths (e.g., c = 20). Though, increasing c does not hurt
the overall complexity as long as n >> c but it slows the
algorithm by the factor of c2 log c2/c1 log c1 where c2 > c1.
Based on this observation, the value of c can be set by the
user based on the size of the database and the requirement
of precision.

Figure 11: Performance of the heuristic for different
database sizes.

8. CONCLUSIONS AND FUTURE WORK
From an application point of view, more complex geomet-

ric structures than the simple spatial objects are required
to represent real world spatial phenomena. It is often the
case that if the database is large and complex, the com-
plete knowledge regarding the participating objects is un-

available. The first contribution of this paper is the design
of a complete set of inference rules through which we can
infer topological relationship between complex regions. The
inference rules are formulated in such a way that they can
also be applied to simple regions. Our second contribution is
to define an overall conceptual framework for the reasoning
process from a database point of view which can handle the
typical database issues like updating, adding, and deleting
information.

A main topic for future work is to implement the frame-
work in spatial databases. We plan to apply some algorith-
mic (e.g., dynamic programming) and Artificial Intelligence
(e.g., forward chaining, decision tree) techniques to imple-
ment this conceptual reasoning framework. An important
topic for future work is to explore other heuristics for global
inference such as using different weights for the edges. In
this document we consider equal weights for all relation-
ships. But an observation, in case of simple regions, shows
that composing any relationship with the overlap relation-
ship always results in a disjunction of relationships. Hence,
it is less probable that the most specific result can be found if
a chain contains an overlap relationship. We can give higher
weight to the edges representing overlap so that a chain con-
taining overlap is considered later by the k-shortest path
algorithm. Another important topic for future work is ex-
tending the reasoning model to all combinations of complex
objects such as line-line and line-region.
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