
46	 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y � 0 0 1 8 - 9 1 6 2 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

COVER FEATURE IRREGULAR APPLICATIONS

Mahantesh Halappanavar, Pacific Northwest National Laboratory

Alex Pothen, Purdue University

Ariful Azad, Lawrence Berkeley National Laboratory

Fredrik Manne, University of Bergen

Johannes Langguth, Simula Research Laboratory

Arif Khan, Purdue University

Executing irregular, data-intensive workloads on multithreaded

architectures can result in performance losses and scalability

problems. Codesigning algorithms and architectures

can realize high performance on irregular applications.

A codesign study reveals four key lessons learned from

implementing matching algorithms on various platforms.

Improving the performance of irregular applications
in graph analytics, data science, network science,
and similar areas on multithreaded architectures is
a challenge because these applications demonstrate

unpredictable workloads and data-access patterns.
Codesigning algorithms and architectures to accom-
modate irregular, data-intensive workloads is one effec-
tive way to tackle this problem. Using graph matching

Codesign Lessons Learned
from Implementing
Graph Matching
on Multithreaded
Architectures

	 A U G U S T 2 0 1 5 � 47

as a case study, our work explores the
interplay between algorithm design
and architectural features.

The first reported results on par-
allel matching date back to the first
DIMACS (Center for Discrete Math-
ematics and Theoretical Computer
Science) Implementation Challenge
held in 1990–1991. One of the studies
by Martin Brady and his colleagues
compared the performance of auction
algorithms on platforms such as the
WaveTracer Zephyr, MasPar MP-1, and
Silicon Graphics IRIS 4d/340 DVX.
They described their results as a “little
short of disastrous.” At that time, they
argued that the ideal platform would
be a machine with “relatively few
numbers of powerful processors, sup-
port for block transfers, lots of mem-
ory, and a high processor-memory
bandwidth to this memory.”1 Modern
multicore and many-core platforms

have some of these ideal characteris-
tics, which we exploit in our design
and implementations.

As part of this work, we also pro-
pose matching as a better bench-
mark than other kernels, such as
breadth-first search (BFS), to evaluate
architectures and algorithm design.
Although matching subsumes BFS, it
also exposes characteristics such as
fine-grained synchronization and exe-
cution serialization. Using two vari-
ants of the matching problem, several
algorithms, and implementations on
diverse platforms, here we share (often
counterintuitive) lessons learned from
implementing irregular applications
on parallel (multithreaded) architec-
tures. Specifically, we present four key
codesign lessons that we have found to
be critical for high performance when
implementing matching algorithms
on various platforms.

GRAPH MATCHING AND
MATCHING ALGORITHMS
Matching is a prototypical combina-
torial problem with numerous appli-
cations in science and engineering.
Given a graph G = (V, E), a matching
M is a subset of independent edges—
that is, no two edges in M share a com-
mon vertex. This problem has appli-
cations in combinatorial scientific
computing,2–4 network alignment,5
fault tolerance,6 optical network
switching,7 image processing,8 data
privacy,9 genome sequencing,10 and
computational immunology.11

The matching problem has several
variants, depending on the objective
function and the graph type. A maxi-
mum matching is one with the maximum
number of matched edges. A maximum
(edge) weight matching maximizes the
sum (or product) of the weight of the
matched edges. (Researchers have also

TABLE 1. Characteristics of approximate and optimal matching algorithms.*

Algorithm Search type
Serial time
complexity

Parallelization
strategy Architecture preference

Half-approximate matching in general graphs

Greedy Local O(m log n) Not concurrent Few fast threads

Locally dominant
(weighted)

Local O(mΔ) Block of vertices per
thread, queue

Moderate number of threads

Suitor (weighted) Local O(mΔ) Block of vertices
per thread, lock
synchronization

Massive multithreading

Maximum-cardinality matching in bipartite graphs

Pothen–Fan Vertex-disjoint
alternating DFSs

O(mn) One DFS per thread
(coarse-grained)

Moderate number of threads

MS–BFS Vertex-disjoint
alternating BFSs

O(mn) One vertex per thread
(fine-grained)

Massive multithreading

Hopcroft–Karp Both alternating
BFS and DFS

O(mn½) Both fine- and coarse-
grained

Heterogeneous

Push–Relabel Label-guided FIFO
search

O(mn) One vertex per thread
(fine-grained)

Heterogeneous

Karp–Sipser (half-
approximate)

Local O(m) Block of vertices per
thread; synchronize
using atomics

Massive multithreading

* m: number of edges; n: number of vertices; Δ: maximum degree of a vertex; BFS: breadth-first search; DFS: depth-first search; FIFO: first in, first out.

48	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

IRREGULAR APPLICATIONS

developed vertex-weighted match-
ings,12 but we will not consider those
here.) Algorithms that compute opti-
mal matchings are conceptually sim-
pler if the graph is bipartite. Approx-
imation algorithms that guarantee
a matching that is within some con-
stant fraction of the optimal match-
ing have lower time complexities, are
amenable to parallelization, and are
simpler to implement.

In this article, we focus on two
problems: half-approximate weighted
matchings in general graphs and
maximum-cardinality matchings in

bipartite graphs. Table 1 summarizes
the characteristics of each. A half-
approximate weighted matching guar-
antees a solution that is at least half the
weight of a maximum weight match-
ing. (Usually it also has at least half the
cardinality of a maximum-cardinality
matching.) Approximation algorithms
not only provide fast initialization in
optimal algorithms, but they often
suffice in many iterative algorithms
where we use matching to improve the
current solution.5,13

Augmentation is a fundamental
technique used in exact-matching algo-
rithms. A path in a graph is a sequence
of edges such that any two consecu-
tive edges on the path share a common
vertex, and the vertices in the path
are unique. An alternating path is a
path that has alternate matched and

unmatched edges. An alternating path
that starts and ends with an unmatched
vertex is an augmenting path. Given an
augmenting path, the cardinality of a
matching can be increased by one by
exchanging the matched edges with
unmatched edges along this path. A
straightforward algorithm for comput-
ing a maximum-cardinality matching
iteratively finds an augmenting path
relative to the current matching and
then augments along such a path. A
matching has maximum cardinality if
and only if there is no augmenting path
relative to it. Broadly, the search for aug-

menting paths can be breadth-first or
depth-first. In contrast to a maximum-
cardinality matching, a maximal match-
ing is one that cannot be augmented by
adding a new edge to it. Several book-
length expositions of matching provide
further information.14–16

In our previous and ongoing work,
we test matching algorithms on sev-
eral generations of a diverse set of mul-
tithreaded architectures such as the
AMD Opteron, the Intel Xeon and Intel
Xeon Phi, the Cray XMT, and Nvidia
GPUs. Collectively, these architectures
represent a broad spectrum of capa-
bilities: clock speeds ranging from 0.5
GHz (XMT) to about 3.0 GHz (Xeon);
hardware multithreading ranging
from none (Opteron) to 128 threads
per processor (XMT); cache hierarchies
ranging from none/flat (XMT) to three

levels (Xeon); memory interconnect
generations ranging from DDR1 (XMT)
to GDDR5 (Tesla K40); advanced fea-
tures on Intel and AMD architectures
(such as branch prediction and specula-
tive execution) to simple XMT designs;
and control structures ranging from
fully autonomous multiple instruc-
tion, multiple data (MIMD) processors
(Opteron) to a 32-way single instruc-
tion, multiple data (SIMD) (Tesla). Dif-
ferent platforms employ different tech-
niques for performance. For example,
the XMT uses massive multithreading
to tolerate latency from memory oper-
ations, whereas the Xeon employs deep
cache hierarchies, advanced branch
prediction, and two-way multithread-
ing to tolerate latencies. The contrast-
ing features in these platforms offer a
rich environment to study how perfor-
mance is influenced by hardware fea-
tures and algorithm design.

LESSON 1: APPROXIMATION
Fast-approximation algorithms play
an important role in matching. Exact
algorithms for edge-weighted match-
ing search for long augmenting paths
or transmit information along long
paths and are inherently sequential.
Slow convergence to optimal solutions
with reduced work in later iterations
also negates the gains from paral-
lelization. However, approximation
algorithms restrict the search to short
augmenting paths and thereby to local
neighborhoods, thus avoiding the long
tail in convergence to optimality.

As an example of a half-
approximation algorithm for edge-
weighted matching, the greedy algo-
rithm considers edges in nonincreasing
order of weights. In each iteration, it
adds a current heaviest edge to the
matching and removes all other edges
that share the endpoints of the matched

MATCHING IS A PROTOTYPICAL
COMBINATORIAL PROBLEM WITH

NUMEROUS APPLICATIONS IN SCIENCE
AND ENGINEERING.

	 A U G U S T 2 0 1 5 � 49

edge. The algorithm iterates until the
graph is empty. Because this algorithm
needs to sort edges by weight and pro-
cess edges in this order, it doesn’t have
much concurrency.

Robert Preis observed that we can
obtain a half-approximation algo-
rithm without sorting by iteratively
matching locally dominant edges—
that is, an edge at least as heavy as all
other edges that share its endpoints.17
This algorithm can be implemented in
time linear in the number of edges. It
has increased concurrency relative to
the greedy algorithm. Fredrik Manne
and Rob Bisseling adapted this algo-
rithm for a parallel implementation
on a distributed-memory platform,18
and Mahantesh Halappanavar and his
colleagues subsequently adapted it to
multithreaded architectures.2

The locally dominant edge algo-
rithm can be implemented by having
each vertex set a pointer to its heavi-
est unmatched neighbor. The two
endpoints of a locally dominant edge
point to each other. This requires
breaking ties in edge weights consis-
tently, for example, by selecting the
lower-numbered vertex. The algorithm
adds the locally dominant edges to
the matching and updates the point-
ers of each unmatched vertex to its
next-heaviest neighbor, if any. The algo-
rithm iterates until there are no verti-
ces to process. In a parallel context, the
search for the next-heaviest neighbor of
each vertex can be done concurrently.
The number of vertices eligible to be
matched in a given iteration represents
the amount of concurrent work, which
decreases as the algorithm progresses.
This number decreases approximately
by half per iteration for several classes
of graphs.2 A shared work queue is
maintained to identify the vertices
that need to be matched in the next

iteration. Different threads working in
parallel synchronize to add new verti-
ces to this queue. The total number of
iterations, the amount of concurrent
work per iteration, and hardware sup-
port for atomic operations affect this
algorithm’s performance.

We recently introduced the Suitor
algorithm, which increases the con-
currency available and reduces the
number of edges traversed by the
locally dominant edge algorithm.19 In
this algorithm, each vertex proposes
to its heaviest neighbor and keeps
track of the best offer it receives from
a neighbor, which is the weight of the
edge that joins them. When a vertex v
proposes to a neighbor w, we say that
v is the suitor of w. When a vertex v
considers proposing to a neighbor w,
it examines the best offer w currently
has. If this weight is higher than the
weight v has to offer, then v’s proposal
cannot succeed, and hence it moves on
to its next-heaviest neighbor. If this
weight is less than the weight v has to
offer, then v annuls the proposal from
the current suitor of w (say x), proposes
to w, and adds x to a queue of vertices
that need to extend a proposal in the
future. Because multiple vertices could
seek to update the current best offer
of a particular vertex and the shared
queue of vertices that need to be pro-
cessed again, we have to synchronize
these location updates using locks.
Even with the heavy-weight synchro-
nization performed through locks, the
Suitor algorithm performs better than
the locally dominant edge algorithm
in parallel because it substantially
reduces the number of edges that need
to be searched in the algorithm.

The Suitor algorithm has several
variants. When the suitor of a vertex
is dislodged, we can search for a ver-
tex for it to propose to immediately or

add it to the end of a queue to be pro-
cessed in the next iteration. The for-
mer process is called eager update, and
the latter is called delayed update. If the
neighbor list of each vertex is sorted in
nonincreasing order of weights, then
we can search this list once from high-
est to lowest weight during the course
of the algorithm. Once a vertex in the
adjacency list of a vertex is an ineligi-
ble partner, then it will continue to be
so for the remainder of the algorithm.
The sorting here involves a number
of local neighborhood lists, not the
entire edge list, so it has more concur-
rency. The sorted variant of the Suitor
algorithm has O(n + m log Δ) worst-
case time complexity. In practice, the
sorted algorithm is preferable when
the matching needs to be computed a
number of times in the context of an
iterative algorithm.

Figure 1 shows the serial and paral-
lel runtimes for these algorithms. The
serial results in Figure 1a show that
the locally dominant edge algorithm
has superior performance relative to
the greedy algorithm, but the Suitor
algorithms perform better than the
locally dominant edge algorithm.
The results show that the Suitor algo-
rithm benefits from the reduced work
and increased concurrency. The cost
of sorting in a serial context hurts the
performance of the Suitor variants,
but these costs are reduced in a par-
allel context because neighbor lists
are sorted in parallel (see Figure 1b).
(Input is a recursive matrix [R-MAT]20
graph with 1 million vertices and 67
million edges.) The algorithm is fur-
ther improved by delaying the search
for partners for vertices whose pro-
posals get annulled until the next
iteration. (Such vertices are unlikely
to be matched in the final approxi-
mate matching, and this feature also

50	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

IRREGULAR APPLICATIONS

better exploits spatial and temporal
locality in the memory accesses.)

The cost of synchronizations
among the large number of threads
is an architectural feature relevant
to approximation algorithms. The
greedy algorithm cannot effectively

support many threads because of the
ordering in which edges should be
processed. The locally dominant edge
algorithm has high synchronization
costs because it inserts and deletes ver-
tices to be matched in a shared work
queue. Shared queues can also cause

memory hotspots. The Suitor algo-
rithm supports many more threads
because a vertex can extend a proposal
to a neighbor speculatively since it can
be annulled by another vertex. The
algorithm also reduces the number of
proposals a vertex makes by keeping
track of the best offer each neighbor
has currently. Sorting the adjacency
lists ensures that a vertex needs to
search its adjacency list only once, and
delaying the processing of vertices
whose proposals have been annulled
reduces cache misses.

LESSON 2:
DATAFLOW DESIGN
We now consider the design of algo-
rithms for massively multithreaded
machines such as the Cray XMT. The
XMT platform builds a global address
space from physically distributed
memory modules associated with
processors. The address space itself is
built using a hardware hashing mech-
anism that maps data randomly to the
memory modules in blocks of 64 bytes
to minimize conflicts and hotspots.21
The latencies from memory accesses
are tolerated using massive (128-way)
multithreading. The XMT has spe-
cial tag bits to denote whether mem-
ory locations are full or empty, and
utilizes extended memory seman-
tics to support such reads and writes.
We redesigned matching algorithms
using dataflow principles to avoid
work queues on the XMT and devel-
oped a novel dataflow algorithm that
performs and scales better than the
queue-based implementation.2

Figure 2 shows the scalability of
the locally dominant edge and Suitor
algorithms on the XMT. The Suitor
algorithm’s implementation is facil-
itated by fine-grained synchroniza-
tion using the full/empty tag bit and

0

10

20

30

40

50

Sorting

Matching

Suitor DSSuitor SSuitor DSuitorLocal domGreedy

Co
m

pu
te

 ti
m

e
(s

)

 45.32 0 0 0 13.09 13.09

 1.90 4.91 3.29 3.05 1.18 0.75

(a)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sorting

Matching

Suitor DSSuitor SSuitor DSuitorLocal dom

Co
m

pu
te

 ti
m

e
(s

)

 0 0 0 0.62 0.36

 1.04 0.85 0.68 0.31 0.20

(b)

FIGURE 1. Relative performance of different edge-weighted approximation algorithms.
(a) Serial performance on Intel Xeon E5-2670 running at a base frequency of 2.6 GHz
(maximum turbo frequency of 3.3 GHz) and (b) parallel performance on an Intel Xeon Phi
coprocessor 5120D running at 1 GHz, using 240 threads on 60 cores. Input is an recursive
matrix (R-MAT) graph with 1 million vertices and 67 million edges. The four variants of the
Suitor algorithm include the base algorithm and those augmented with delayed updates (D),
sorted adjacency lists (S), and both features (DS). The sorting time is shown in red for the
algorithms that sort their edges or adjacency lists, and the matching time is shown in blue.

	 A U G U S T 2 0 1 5 � 51

extended memory semantics. On the
XMT, we observed up to seven times
improvement in performance for the
Suitor algorithm over the locally dom-
inant edge algorithm; it also enjoys
better scalability. The benefits of
dataflow design, exemplified by the
Suitor algorithm, are evident from its
superior performance across differ-
ent multithreaded platforms where
synchronization was implemented
using OpenMP locks because there is
no explicit hardware support for syn-
chronization.19 Even with the use of
such a heavyweight synchronization
mechanism, the Suitor algorithm has
superior performance relative to the
queue-based locally dominant edge
algorithm.

The key architectural feature
enabling dataflow algorithms is hard-
ware support for fine-grained synchro-
nization. The work in alternating BFS-
based parallel matching algorithms is
fine-grained, with a significant need
for synchronization among threads
executing concurrently. Although
hardware-supported atomic memory
operations were useful in some cases,
the support for fine-grained synchro-
nization enabled the redesign of algo-
rithms that yielded substantial perfor-
mance improvements. The dataflow
design overcomes load balancing,
memory contention, and hotspotting
problems. We observed that the design
not only improves the overall perfor-
mance but also results in better scal-
ability of the dataflow algorithms.

LESSON 3: SEARCH STYLE
Augmentation-based algorithms search
for augmenting paths and augment the
current matching until such paths no
longer exist. Augmenting paths can be
constructed using either an alternat-
ing BFS or an alternating depth-first

search (DFS), starting either from a sin-
gle vertex or from all unmatched ver-
tices. Figure 3 illustrates the construc-
tion of these paths using alternating
BFS and alternating DFS from multiple
source vertices. Alternating BFS and

DFS means that we search for all neigh-
bors at every other level and then search
for a matched edge in the other levels.
Because starting from a single vertex
has limited concurrency, we did not give
it further consideration. The searches

No. of processors

1 2 4 8 16 32 64 128

512

256

128

64

32

16

8

4

2

1

0.5

Suitor-ER-27

Suitor-RMAT-B-27

LD-ER-27

LD-RMAT-B-27

Co
m

pu
te

r t
im

e
(s

, l
og

 s
ca

le
)

FIGURE 2. Scalability of the locally dominant edge and Suitor algorithms on a Cray
XMT for two types of R-MAT graphs (134 million vertices and over a billion edges).
The Suitor algorithm is two to seven times faster than the locally dominant (LD) algo-
rithm and scales better.

x1

x2

x3

x4

x5

x6

x7

y1

y2

y4

y5

x6

x7

y3

y6

y7

y1 y2

x4 x5

y3

x1 x1 x2

y4y3y2y1

x3 x4 x5 x6

x5 y6

x2

x3

x6

y6

y4

T1

T1

T2

T1

T2

T2

(a) (b) (c)

FIGURE 3. Algorithm search style. (a) For the initial matching, two threads (T1 and T2) are
used to augment a maximal matching. (b) Another approach uses alternating depth-first
search (DFS) to spawn separate threads for each tree. (c) In contrast, alternating breadth-
first search (BFS)–based algorithms can use all threads to explore the neighborhood of
vertices in the current level. They then synchronize the threads before proceeding to the
next level of the BFS forest.

52	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

IRREGULAR APPLICATIONS

from multiple source vertices have to be
vertex-disjoint in order to find multiple
augmenting paths. However, choosing
between BFS and DFS approaches is a
key decision that is influenced by archi-
tectural features and the characteristics
of the graph we are matching.

In our work with these
approaches,22 we found that DFS-
based approaches perform better on

traditional multicore platforms, but
BFS-based approaches are faster on
the XMT, which has a slower clock and
massive numbers of threads. Figure 4
provides our results using 16 graphs
on the Opteron and XMT. Although
some BFS-based approaches (such as
Hopcroft–Karp) have superior worst-
case time complexity, the DFS-based
approaches emerged as practical

winners across multiple studies con-
ducted on large sets of graphs. Hence,
we found that the worst-case com-
putational complexity of matching
algorithms is not a good predictor of
parallel performance. Hannah Bast
and colleagues have shown that O(m
log n) is the expected time complexity
for maximum cardinality matching
in Erdos–Renyi random graphs with
specified average degree.23 (See earlier
work for further details.24)

In our work on bipartite maxi-
mum matching, we implemented
five augmentation-based algorithms
in conjunction with two initializa-
tion schemes on multicore and XMT
platforms12 and the Push–Relabel
algorithm with several heuristics on
multicore platforms.25 We adapted
several lessons from the extensive
study in which Iain Duff and his col-
leagues compared serial algorithms.4
We implemented a pure alternating
BFS-based approach and two pure
DFS-based approaches, one of which
is Pothen–Fan. The remaining two
schemes were hybrid breadth-first
and depth-first approaches: parallel
Hopcroft–Karp and parallel relaxed
Hopcroft–Karp. The Hopcroft–Karp
implementations involve the elabo-
rate construction of level graphs to
track the multiple vertex-disjoint aug-
menting paths. In the first part, alter-
nating BFSs are initiated from multi-
ple unmatched vertices leading to the
construction of a level graph ending at
the discovery of the first unmatched
vertex. Subsequently, DFSs are initi-
ated from the other end to find vertex-
disjoint augmenting paths in the level
graph. The relaxed version of the
algorithm comes from relaxing the
restriction that the augmenting paths
should be the shortest in the original
Hopcroft–Karp algorithm.

Performance relative to best algorithm (log2 scale)
(a)

1 2 3 4 5 6 7 8

1.0

0.8

0.6

0.4

0.2

0

Fr
ac

tio
n

of
 p

ro
bl

em
s

(b)

1.0

0.8

0.6

0.4

0.2

0

Fr
ac

tio
n

of
 p

ro
bl

em
s

1 2 3 4 5 6 7 8

Performance relative to best algorithm (log2 scale)

Alternating DFS (Pothen–Fan)

Alternating BFS (MS–BFS)

Alternating BFS and DFS (Hopcroft–Karp)

Alternating DFS (Pothen–Fan)

Alternating BFS (MS–BFS)

Alternating BFS and DFS (Hopcroft–Karp)

FIGURE 4. Performance profiles of the three best algorithms for maximum-cardinality
matching: (a) AMD Opteron and (b) Cray XMT. The results are shown for 16 graphs. The
fraction of input problems is plotted on the y-axis, and the runtime relative to the best
performing algorithm (in log2 scale) is plotted on the x-axis. The Pothen–Fan algorithm per-
formed best on the Opteron, and an alternating BFS algorithm was the winner on the XMT.

	 A U G U S T 2 0 1 5 � 53

Given the overhead required to con-
struct the level graphs, it is no surprise
that the Hopcroft–Karp algorithms
were less competitive. Because of its
simplicity and efficient techniques,
the parallel Pothen–Fan algorithm
emerged as a clear winner for both
serial and parallel approaches on mul-
ticore platforms with a modest number
of cores. Our Pothen–Fan algorithm
implementation used DFS to construct
vertex-disjoint alternating-path search
trees using the look-ahead technique—
that is, it performed one level of BFS
at every alternate level to identify
unmatched vertices. We further imple-
mented the fairness technique from the
study by Iain Duff and his colleagues4
that alternates the direction in which
the adjacency lists of matched vertices
are explored in every other iteration.

In addition to multithreading, the
hardware feature most relevant to
optimal algorithms is the availability
of a large shared address space for mul-
tithreaded platforms. The design and
development of efficient graph algo-
rithms for distributed-memory plat-
forms is a difficult problem, especially
for algorithms with complex and syn-
chronized search patterns. Graphs aris-
ing in modern data-intensive applica-
tions such as social networks and data
mining are difficult to partition among
the processors while reducing commu-
nications. Partitioning such graphs on
distributed-memory platforms leads
to communication bottlenecks, and
on multithreaded platforms with non-
uniform memory access (NUMA) costs,
it can lead to significant performance
losses. The Cray XMT addresses this
problem with massive multithread-
ing and by having several memory
requests in flight during a clock cycle.
However, on modern microprocessor
architectures, it is necessary to develop

novel schemes for latency tolerance
beyond multithreading, and, when
possible, programmers should care-
fully design data structures and mem-
ory layout schemes to exploit spatial
and temporal localities.26

LESSON 4: SERIALIZATION
AND SENSITIVITY
We now turn our attention to a
nonaugmentation-based approach for
maximum matching in bipartite
graphs and the parallel Push–Relabel
algorithm. This algorithm intuitively
provides an estimate of the nearest
unmatched vertex from a given vertex
by maintaining distance labels. The
distances provide a lower bound on the
length of an alternating path from a
given vertex to its nearest unmatched
vertex. In our implementation,25 we
adapted techniques from a serial imple-
mentation by Kamer Kaya and his col-
leagues27 to a parallel context. We
compared the performance of this algo-
rithm with the Pothen–Fan algorithm
on several multicore platforms. Some of
the algorithmic ideas showcased by the
Push–Relabel algorithm are also rele-
vant to other algorithms for weighted
matching and network flow. Of partic-
ular relevance are the heuristics that
determine the relabeling frequency,

queuing of active vertices, and switch
to serial computation.

A salient feature of most opti-
mal matching algorithms is the rapid
decrease in available concurrent work
as the algorithm progresses. Toward
the end of execution, there is a need to
process long augmenting paths (lon-
ger distances in the Push–Relabel algo-
rithm) that do not have enough parallel
work, which reveals the need for fast
serial performance. In the case of the
Push–Relabel algorithm, we demon-
strate the benefit of switching to serial
computation at different stages of the
execution. Figure 5 shows the average
runtime over 36 input graphs and the
effect of switching to serial code toward
the end of the algorithm. (Additional
details are available in earlier work.25)

Fast serial performance is thus an
important hardware feature that sig-
nificantly benefits the overall graph
algorithm performance. Therefore, we
believe that emerging heterogeneous
architectures that combine different
classes of compute units sharing an
address space will be important for
irregular (graph) algorithms. We aim to
explore these architectures for match-
ing algorithms in the near future.

In a serial context, Duff and his col-
leagues observed that the runtimes of

512

256

128

64

32

16

8

4

Co
m

pu
te

 ti
m

e
(s

)

No. of cores on AMD Opteron
1 2 4 8 16 32

ST = 0 ST = 100

ST = 500 ST = 1,000

FIGURE 5. Runtimes of the Push–Relabel algorithm for maximum-cardinality matching.
We averaged 36 input graphs run on the AMD Opteron system. ST indicates the number
of remaining unmatched vertices when the switch to serial computing was made.

54	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

IRREGULAR APPLICATIONS

matching algorithms varied signifi-
cantly when they randomly permuted
the vertices and neighbor lists.4 This
raised serious doubts about the util-
ity of parallel algorithms and imple-
mentations for maximum matching.
Enforcing vertex ordering in a paral-
lel context leads to serialization and
lost efficiency. We therefore studied
the parallel sensitivity of different
algorithms to prove their effective-
ness. We defined an algorithm’s par-
allel sensitivity as the ratio of the
standard deviation of runtimes from
several runs to the mean of runtimes
multiplied by 100. Key observations
from our work were that alternat-
ing DFS-based algorithms were more
sensitive than alternating BFS-based
algorithms (up to a 25 percent vari-
ance for DFS compared with up to a 5
percent variance for BFS algorithms),
and fairness that helped stabilize
serial algorithms made parallel algo-
rithms more sensitive.

The lessons from our work tran-
scend the matching problem
itself and can be applied to sev-

eral other combinatorial problems and
extended to distributed-memory plat-
forms. For instance, we have success-
fully adapted some of the ideas such as
dataflow principles in designing effi-
cient vertex coloring of graphs.28 The
key insight from our work highlights
the need for the careful design of algo-
rithms influenced by architectural
features and graph characteristics.

A topic of emerging importance
that we did not discuss here is design-
ing algorithms for optimal energy and
power consumption. This is a relatively
new research topic for irregular algo-
rithms that will become important for
modern low-power architectures.29

ACKNOWLEDGMENTS
This work was supported in part by the
US Department of Energy (the CSCAPES
Institute DE-FC02-08ER25864, DE-FG02-
13ER26135, and DE-AC02-05CH11231), the
US National Science Foundation (CCF-
1218916), an IBM Fellowship, and the Cen-
ter for Adaptive Supercomputing Soft-
ware (CASS) at Pacific Northwest National
Laboratory (PNNL). PNNL is operated by
Battelle for the US Department of Energy
under contract DE-AC05-76RL01830.

REFERENCES
1.	 M. Brady et al., “The Assignment

Problem on Parallel Architectures,”
Network Flows and Matching: First
DIMACS Implementation Challenge,
D.S. Johnson and C.C. McGeoch,
eds., Am. Mathematical Soc., 1993,
pp. 469–517.

2.	 M. Halappanavar et al., “Approxi-
mate Weighted Matching on Emerg-
ing Manycore and Multithreaded
Architectures,” Int’l J. High Perfor-
mance Computing Applications, vol. 26,
no. 4, 2012, pp. 413–430.

3.	 A. Pothen and C.-J. Fan, “Comput-
ing the Block Triangular Form of a
Sparse Matrix,” ACM Trans. Mathe-
matical Software, vol. 16, no. 4, 1990,
pp. 303–324.

4.	 I.S. Duff, K. Kaya, and B. Uçar,
“Design, Implementation, and
Analysis of Maximum Transversal
Algorithms,” ACM Trans. Mathe-
matical Software, vol. 38, no. 2, 2012,
article no. 13.

5.	 A. Khan et al., “A Multithreaded
Algorithm for Network Alignment
via Approximate Matching,” Proc.
Int’l Conf. High Performance Comput-
ing, Networking, Storage and Analysis
(SC 12), 2012, article no. 64.

6.	 A. Nawab et al., “Tolerating Cor-
related Failures for Generalized
Cartesian Distributions via Bipartite

Matching,” Proc. 8th ACM Int’l Conf.
Computing Frontiers (CF 11), 2011, arti-
cle no. 36.

7.	 Z. Zhu et al., “Fully Programmable
and Scalable Optimal Switching
Fabric for Petabyte Data Center,”
Optics Express, vol. 23, no. 3, 2015,
pp. 3563–3580.

8.	 S. Belongie, J. Malik, and J. Puzi-
cha, “Shape Matching and Object
Recognition Using Shape Contexts,”
IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 24, 2002,
pp. 509–522.

9.	 K.M. Choromanski, T. Jebara, and
K. Tang, “Adaptive Anonymity via
b-Matching,” Advances in Neural
Information Processing Systems, C.J.C.
Burges et al., eds., 2013, pp. 3192–3200.

10.	 P. Medvedev and M. Brudno, “Maxi-
mum Likelihood Genome Assembly,”
J. Computational Biology, vol. 16, no. 8,
2009, pp. 1101–1116.

11.	 S. Pyne et al., “Automated High-
Dimensional Flow Cytometric Data
Analysis,” Proc. Nat’l Academy of
Sciences, vol. 106, no. 21, 2009,
pp. 8519–8524.

12.	 M. Halappanavar, “Algorithms
for Vertex-Weighted Matching in
Graphs,” PhD dissertation, Dept. of
Computer Science, Old Dominion
Univ., 2009.

13.	 G. Karypis and V. Kumar, “Paral-
lel Multilevel k-Way Partitioning
Scheme for Irregular Graphs,” Proc.
Int’l Conf. High Performance Comput-
ing, Networking, Storage and Analysis
(SC 96), 1996, article no. 35.

14.	 L. Lovasz, Matching Theory, Elsevier
Science, 1986.

15.	 A. Schrijver, Combinatorial Opti-
mization: Polyhedra and Efficiency
(Paths, Flows and Matchings), vol. A,
Springer, 2003.

16.	 W.J. Cook et al., Combinatorial Optimi-
zation, John Wiley and Sons, 1998.

	 A U G U S T 2 0 1 5 � 55

17.	 R. Preis, “Linear Time 1/2-
Approximation Algorithm for Maxi-
mum Weighted Matching in General
Graphs,” Proc. 16th Ann. Conf. The-
oretical Aspects of Computer Science
(STACS 99), 1999, pp. 259–269.

18.	 F. Manne and R.H. Bisseling, “A Par-
allel Approximation Algorithm for
the Weighted Maximum Matching
Problem,” Proc. 7th Int’l Conf. Paral-
lel Processing and Applied Mathemat-
ics (PPAM 07), 2007, pp. 708–717.

19.	 F. Manne and M. Halappanavar,
“New Effective Multithreaded
Matching Algorithms,” Proc. IEEE
28th Int’l Parallel and Distributed
Processing Symp. (IPDPS 14), 2014,
pp. 519–528.

20.	 D. Chakrabarti and C. Faloutsos,
“Graph Mining: Laws, Generators, and
Algorithms,” ACM Computing Surveys,
vol. 38, no. 1, 2006, article no. 2.

21.	 J. Feo et al., “ELDORADO,” Proc. 2nd
Conf. Computing Frontiers (CF 05),
2005, pp. 28–34.

22.	 A. Azad et al., “Multithreaded
Algorithms for Maximum Match-
ing in Bipartite Graphs,” Proc. IEEE
26th Int’l Parallel and Distributed
Processing Symp. (IPDPS 12), 2012,
pp. 860–872.

23.	 H. Bast et al., “Matching Algorithms
are Fast in Sparse Random Graphs,”
Proc. 21st Ann. Symp. Theoretical
Aspects of Computer Science (STACS
04), LNCS 2996, 2004, pp. 81–92.

24.	 A. Azad, A. Buluc, and A. Pothen,
“A Parallel Tree Grafting Algorithm
for Maximum Cardinality Matching
in Bipartite Graphs,” Proc. IEEE 29th
Int’l Parallel and Distributed Processing
Symp. (IPDPS 15), 2015, pp. 1075–1084.

25.	 J. Langguth et al., “On Parallel
Push–Relabel Based Algorithms for
Bipartite Maximum Matching,” Par-
allel Computing, vol. 40, no. 7, 2014,
pp. 289–308.

26.	 D. Chavarría-Miranda, M. Halappa-
navar, and A. Kalyanaraman, “Scal-
ing Graph Community Detection on
the Tilera Many-Core Architecture,”
Proc. IEEE Int’l Conf. High Perfor-
mance Computing (HiPC 14), 2014,
pp. 1–11.

27.	 K. Kaya et al., “Push–Relabel Based
Algorithms for the Maximum
Transversal Problem,” Computers &
Operations Research, vol. 40, no. 5,
2013, pp. 1266–1275.

28.	 U. Catalyurek et al., “Graph Color-
ing Algorithms for Multi-core and
Massively Multithreaded Architec-
tures,” Parallel Computing, vol. 38,
nos. 10-11, 2012, pp. 576–594.

29.	 D. Chavarría-Miranda et al.,
“Optimizing Irregular Applica-
tions for Performance and Energy
on the Tilera Many-Core Archi-
tecture,” Proc. 12th ACM Int’l
Conf. Computing Frontiers (CF 15),
article no. 12.

ABOUT THE AUTHORS

MAHANTESH HALAPPANAVAR is a staff scientist in the Fundamental and

Computational Sciences Directorate at the Pacific Northwest National Labo-

ratory. His research interests include the interplay of algorithm design, archi-

tectural features, and input characteristics targeting massively multithreaded

architectures such as the Cray XMT and emerging multicore and many-core

platforms. Halappanavar received a PhD in computer science from Old Domin-

ion University. Contact him at hala@pnnl.gov.

ALEX POTHEN is a professor of computer science at Purdue University. His

research interests include combinatorial scientific computing, parallel com-

puting, computational science and engineering, and bioinformatics. Pothen

received a PhD in applied mathematics from Cornell University. He is an edi-

tor of the Journal of the ACM and SIAM Review. Contact him at apothen@

purdue.edu.

ARIFUL AZAD is a postdoctoral fellow in the Computational Research Division

at Lawrence Berkeley National Laboratory. His research interests include par-

allel computing, computational science and engineering, and bioinformatics.

Azad received a PhD in computer science from Purdue University. Contact him

at azad@lbl.gov.

FREDRIK MANNE is a professor of computer science at the University of Ber-

gen, Norway. His research interests include parallel algorithms for combinato-

rial scientific computing. Manne received a PhD in computer science from the

University of Bergen. Contact him at manne@ii.uib.no.

JOHANNES LANGGUTH is a postdoctoral fellow at the Simula Research Lab-

oratory in Oslo, Norway. His research interests include computer architecture,

parallel algorithms, combinatorial optimization, and high-performance scientific

computing on multicore CPUs and GPUs. Langguth received a PhD in computer

science from the University of Bergen. Contact him at langguth@simula.no.

ARIF KHAN is a doctoral student in the Department of Computer Science at Pur-

due University. His research interests includes graph algorithms, bioinformatics,

and parallel and high-performance computing. Khan received an MS in computer

science from the University of Florida. Contact him at khan58@purdue.edu.

