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Executing irregular, data-intensive workloads on multithreaded 

architectures can result in performance losses and scalability 

problems. Codesigning algorithms and architectures 

can realize high performance on irregular applications. 

A codesign study reveals four key lessons learned from 

implementing matching algorithms on various platforms.

Improving the performance of irregular applications 
in graph analytics, data science, network science, 
and similar areas on multithreaded architectures is 
a challenge because these applications demonstrate 

unpredictable workloads and data-access patterns. 
Codesigning algorithms and architectures to accom-
modate irregular, data-intensive workloads is one effec-
tive way to tackle this problem. Using graph matching 

Codesign Lessons Learned 
from Implementing
Graph Matching 
on Multithreaded 
Architectures
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as a case study, our work explores the 
interplay between algorithm design 
and architectural features.

The first reported results on par-
allel matching date back to the first 
DIMACS (Center for Discrete Math-
ematics and Theoretical Computer 
Science) Implementation Challenge 
held in 1990–1991. One of the studies 
by Martin Brady and his colleagues 
compared the performance of auction 
algorithms on platforms such as the 
WaveTracer Zephyr, MasPar MP-1, and 
Silicon Graphics IRIS 4d/340 DVX. 
They described their results as a “little 
short of disastrous.” At that time, they 
argued that the ideal platform would 
be a machine with “relatively few 
numbers of powerful processors, sup-
port for block transfers, lots of mem-
ory, and a high processor-memory 
bandwidth to this memory.”1 Modern 
multicore and many-core platforms 

have some of these ideal characteris-
tics, which we exploit in our design 
and implementations. 

As part of this work, we also pro-
pose matching as a better bench-
mark than other kernels, such as 
breadth-first search (BFS), to evaluate 
architectures and algorithm design. 
Although matching subsumes BFS, it 
also exposes characteristics such as 
fine-grained synchronization and exe-
cution serialization. Using two vari-
ants of the matching problem, several 
algorithms, and implementations on 
diverse platforms, here we share (often 
counterintuitive) lessons learned from 
implementing irregular applications 
on parallel (multithreaded) architec-
tures. Specifically, we present four key 
codesign lessons that we have found to 
be critical for high performance when 
implementing matching algorithms 
on various platforms. 

GRAPH MATCHING AND 
MATCHING ALGORITHMS
Matching is a prototypical combina-
torial problem with numerous appli-
cations in science and engineering. 
Given a graph G = (V, E), a matching 
M is a subset of independent edges—
that is, no two edges in M share a com-
mon vertex. This problem has appli-
cations in combinatorial scientific 
computing,2–4 network alignment,5 
fault tolerance,6 optical network 
switching,7 image processing,8 data 
privacy,9 genome sequencing,10 and 
computational immunology.11 

The matching problem has several 
variants, depending on the objective 
function and the graph type. A maxi-
mum matching is one with the maximum 
number of matched edges. A maximum 
(edge) weight matching maximizes the 
sum (or product) of the weight of the 
matched edges. (Researchers have also 

TABLE 1. Characteristics of approximate and optimal matching algorithms.*

Algorithm Search type
Serial time 
complexity

Parallelization 
strategy Architecture preference

Half-approximate matching in general graphs

Greedy Local O(m log n) Not concurrent Few fast threads

Locally dominant 
(weighted)

Local O(mΔ) Block of vertices per 
thread, queue 

Moderate number of threads

Suitor (weighted) Local O(mΔ) Block of vertices 
per thread, lock 
synchronization

Massive multithreading

Maximum-cardinality matching in bipartite graphs

Pothen–Fan Vertex-disjoint 
alternating DFSs

O(mn) One DFS per thread 
(coarse-grained)

Moderate number of threads

MS–BFS Vertex-disjoint 
alternating BFSs

O(mn) One vertex per thread 
(fine-grained)

Massive multithreading

Hopcroft–Karp Both alternating 
BFS and DFS

O(mn½) Both fine- and coarse-
grained

Heterogeneous

Push–Relabel Label-guided FIFO 
search

O(mn) One vertex per thread 
(fine-grained)

Heterogeneous

Karp–Sipser (half-
approximate)

Local O(m) Block of vertices per 
thread; synchronize 
using atomics

Massive multithreading

* m: number of edges; n: number of vertices; Δ: maximum degree of a vertex; BFS: breadth-first search; DFS: depth-first search; FIFO: first in, first out.



48	 C O M P U T E R   � W W W . C O M P U T E R . O R G / C O M P U T E R

IRREGULAR APPLICATIONS

developed vertex-weighted match-
ings,12 but we will not consider those 
here.) Algorithms that compute opti-
mal matchings are conceptually sim-
pler if the graph is bipartite. Approx-
imation algorithms that guarantee 
a matching that is within some con-
stant fraction of the optimal match-
ing have lower time complexities, are 
amenable to parallelization, and are 
simpler to implement. 

In this article, we focus on two 
problems: half-approximate weighted 
matchings in general graphs and 
maximum-cardinality matchings in 

bipartite graphs. Table 1 summarizes 
the characteristics of each. A half-
approximate weighted matching guar-
antees a solution that is at least half the 
weight of a maximum weight match-
ing. (Usually it also has at least half the 
cardinality of a maximum-cardinality 
matching.) Approximation algorithms 
not only provide fast initialization in 
optimal algorithms, but they often 
suffice in many iterative algorithms 
where we use matching to improve the 
current solution.5,13 

Augmentation is a fundamental 
technique used in exact-matching algo-
rithms. A path in a graph is a sequence 
of edges such that any two consecu-
tive edges on the path share a common 
vertex, and the vertices in the path 
are unique. An alternating path is a 
path that has alternate matched and 

unmatched edges. An alternating path 
that starts and ends with an unmatched 
vertex is an augmenting path. Given an 
augmenting path, the cardinality of a 
matching can be increased by one by 
exchanging the matched edges with 
unmatched edges along this path. A 
straightforward algorithm for comput-
ing a maximum-cardinality matching 
iteratively finds an augmenting path 
relative to the current matching and 
then augments along such a path. A 
matching has maximum cardinality if 
and only if there is no augmenting path 
relative to it. Broadly, the search for aug-

menting paths can be breadth-first or 
depth-first. In contrast to a maximum-
cardinality matching, a maximal match-
ing is one that cannot be augmented by 
adding a new edge to it. Several book-
length expositions of matching provide 
further information.14–16

In our previous and ongoing work, 
we test matching algorithms on sev-
eral generations of a diverse set of mul-
tithreaded architectures such as the 
AMD Opteron, the Intel Xeon and Intel 
Xeon Phi, the Cray XMT, and Nvidia 
GPUs. Collectively, these architectures 
represent a broad spectrum of capa-
bilities: clock speeds ranging from 0.5 
GHz (XMT) to about 3.0 GHz (Xeon); 
hardware multithreading ranging 
from none (Opteron) to 128 threads 
per processor (XMT); cache hierarchies 
ranging from none/flat (XMT) to three 

levels (Xeon); memory interconnect 
generations ranging from DDR1 (XMT) 
to GDDR5 (Tesla K40); advanced fea-
tures on Intel and AMD architectures 
(such as branch prediction and specula-
tive execution) to simple XMT designs; 
and control structures ranging from 
fully autonomous multiple instruc-
tion, multiple data (MIMD) processors 
(Opteron) to a 32-way single instruc-
tion, multiple data (SIMD) (Tesla). Dif-
ferent platforms employ different tech-
niques for performance. For example, 
the XMT uses massive multithreading 
to tolerate latency from memory oper-
ations, whereas the Xeon employs deep 
cache hierarchies, advanced branch 
prediction, and two-way multithread-
ing to tolerate latencies. The contrast-
ing features in these platforms offer a 
rich environment to study how perfor-
mance is influenced by hardware fea-
tures and algorithm design. 

LESSON 1: APPROXIMATION
Fast-approximation algorithms play 
an important role in matching. Exact 
algorithms for edge-weighted match-
ing search for long augmenting paths 
or transmit information along long 
paths and are inherently sequential. 
Slow convergence to optimal solutions 
with reduced work in later iterations 
also negates the gains from paral-
lelization. However, approximation 
algorithms restrict the search to short 
augmenting paths and thereby to local 
neighborhoods, thus avoiding the long 
tail in convergence to optimality. 

As an example of a half-
approximation algorithm for edge-
weighted matching, the greedy algo-
rithm considers edges in nonincreasing 
order of weights. In each iteration, it 
adds a current heaviest edge to the 
matching and removes all other edges 
that share the endpoints of the matched 

MATCHING IS A PROTOTYPICAL 
COMBINATORIAL PROBLEM WITH 

NUMEROUS APPLICATIONS IN SCIENCE 
AND ENGINEERING.
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edge. The algorithm iterates until the 
graph is empty. Because this algorithm 
needs to sort edges by weight and pro-
cess edges in this order, it doesn’t have 
much concurrency.

Robert Preis observed that we can 
obtain a half-approximation algo-
rithm without sorting by iteratively 
matching locally dominant edges—
that is, an edge at least as heavy as all 
other edges that share its endpoints.17 
This algorithm can be implemented in 
time linear in the number of edges. It 
has increased concurrency relative to 
the greedy algorithm. Fredrik Manne 
and Rob Bisseling adapted this algo-
rithm for a parallel implementation 
on a distributed-memory platform,18 
and Mahantesh Halappanavar and his 
colleagues subsequently adapted it to 
multithreaded architectures.2 

The locally dominant edge algo-
rithm can be implemented by having 
each vertex set a pointer to its heavi-
est unmatched neighbor. The two 
endpoints of a locally dominant edge 
point to each other. This requires 
breaking ties in edge weights consis-
tently, for example, by selecting the 
lower-numbered vertex. The algorithm 
adds the locally dominant edges to 
the matching and updates the point-
ers of each unmatched vertex to its 
next-heaviest neighbor, if any. The algo-
rithm iterates until there are no verti-
ces to process. In a parallel context, the 
search for the next-heaviest neighbor of 
each vertex can be done concurrently. 
The number of vertices eligible to be 
matched in a given iteration represents 
the amount of concurrent work, which 
decreases as the algorithm progresses. 
This number decreases approximately 
by half per iteration for several classes 
of graphs.2 A shared work queue is 
maintained to identify the vertices 
that need to be matched in the next 

iteration. Different threads working in 
parallel synchronize to add new verti-
ces to this queue. The total number of 
iterations, the amount of concurrent 
work per iteration, and hardware sup-
port for atomic operations affect this 
algorithm’s performance. 

We recently introduced the Suitor 
algorithm, which increases the con-
currency available and reduces the 
number of edges traversed by the 
locally dominant edge algorithm.19 In 
this algorithm, each vertex proposes 
to its heaviest neighbor and keeps 
track of the best offer it receives from 
a neighbor, which is the weight of the 
edge that joins them. When a vertex v 
proposes to a neighbor w, we say that 
v is the suitor of w. When a vertex v 
considers proposing to a neighbor w, 
it examines the best offer w currently 
has. If this weight is higher than the 
weight v has to offer, then v’s proposal 
cannot succeed, and hence it moves on 
to its next-heaviest neighbor. If this 
weight is less than the weight v has to 
offer, then v annuls the proposal from 
the current suitor of w (say x), proposes 
to w, and adds x to a queue of vertices 
that need to extend a proposal in the 
future. Because multiple vertices could 
seek to update the current best offer 
of a particular vertex and the shared 
queue of vertices that need to be pro-
cessed again, we have to synchronize 
these location updates using locks. 
Even with the heavy-weight synchro-
nization performed through locks, the 
Suitor algorithm performs better than 
the locally dominant edge algorithm 
in parallel because it substantially 
reduces the number of edges that need 
to be searched in the algorithm. 

The Suitor algorithm has several 
variants. When the suitor of a vertex 
is dislodged, we can search for a ver-
tex for it to propose to immediately or 

add it to the end of a queue to be pro-
cessed in the next iteration. The for-
mer process is called eager update, and 
the latter is called delayed update. If the 
neighbor list of each vertex is sorted in 
nonincreasing order of weights, then 
we can search this list once from high-
est to lowest weight during the course 
of the algorithm. Once a vertex in the 
adjacency list of a vertex is an ineligi-
ble partner, then it will continue to be 
so for the remainder of the algorithm. 
The sorting here involves a number 
of local neighborhood lists, not the 
entire edge list, so it has more concur-
rency. The sorted variant of the Suitor 
algorithm has O(n + m log Δ) worst-
case time complexity. In practice, the 
sorted algorithm is preferable when 
the matching needs to be computed a 
number of times in the context of an 
iterative algorithm. 

Figure 1 shows the serial and paral-
lel runtimes for these algorithms. The 
serial results in Figure 1a show that 
the locally dominant edge algorithm 
has superior performance relative to 
the greedy algorithm, but the Suitor 
algorithms perform better than the 
locally dominant edge algorithm. 
The results show that the Suitor algo-
rithm benefits from the reduced work 
and increased concurrency. The cost 
of sorting in a serial context hurts the 
performance of the Suitor variants, 
but these costs are reduced in a par-
allel context because neighbor lists 
are sorted in parallel (see Figure 1b). 
(Input is a recursive matrix [R-MAT]20 
graph with 1 million vertices and 67 
million edges.) The algorithm is fur-
ther improved by delaying the search 
for partners for vertices whose pro-
posals get annulled until the next 
iteration. (Such vertices are unlikely 
to be matched in the final approxi-
mate matching, and this feature also 
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better exploits spatial and temporal 
locality in the memory accesses.) 

The cost of synchronizations 
among the large number of threads 
is an architectural feature relevant 
to approximation algorithms. The 
greedy algorithm cannot effectively 

support many threads because of the 
ordering in which edges should be 
processed. The locally dominant edge 
algorithm has high synchronization 
costs because it inserts and deletes ver-
tices to be matched in a shared work 
queue. Shared queues can also cause 

memory hotspots. The Suitor algo-
rithm supports many more threads 
because a vertex can extend a proposal 
to a neighbor speculatively since it can 
be annulled by another vertex. The 
algorithm also reduces the number of 
proposals a vertex makes by keeping 
track of the best offer each neighbor 
has currently. Sorting the adjacency 
lists ensures that a vertex needs to 
search its adjacency list only once, and 
delaying the processing of vertices 
whose proposals have been annulled 
reduces cache misses. 

LESSON 2:  
DATAFLOW DESIGN
We now consider the design of algo-
rithms for massively multithreaded 
machines such as the Cray XMT. The 
XMT platform builds a global address 
space from physically distributed 
memory modules associated with 
processors. The address space itself is 
built using a hardware hashing mech-
anism that maps data randomly to the 
memory modules in blocks of 64 bytes 
to minimize conflicts and hotspots.21 
The latencies from memory accesses 
are tolerated using massive (128-way) 
multithreading. The XMT has spe-
cial tag bits to denote whether mem-
ory locations are full or empty, and 
utilizes extended memory seman-
tics to support such reads and writes. 
We redesigned matching algorithms 
using dataflow principles to avoid 
work queues on the XMT and devel-
oped a novel dataflow algorithm that 
performs and scales better than the 
queue-based implementation.2

Figure 2 shows the scalability of 
the locally dominant edge and Suitor 
algorithms on the XMT. The Suitor 
algorithm’s implementation is facil-
itated by fine-grained synchroniza-
tion using the full/empty tag bit and 
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FIGURE 1. Relative performance of different edge-weighted approximation algorithms. 
(a) Serial performance on Intel Xeon E5-2670 running at a base frequency of 2.6 GHz 
(maximum turbo frequency of 3.3 GHz) and (b) parallel performance on an Intel Xeon Phi 
coprocessor 5120D running at 1 GHz, using 240 threads on 60 cores. Input is an recursive 
matrix (R-MAT) graph with 1 million vertices and 67 million edges. The four variants of the 
Suitor algorithm include the base algorithm and those augmented with delayed updates (D), 
sorted adjacency lists (S), and both features (DS). The sorting time is shown in red for the 
algorithms that sort their edges or adjacency lists, and the matching time is shown in blue. 
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extended memory semantics. On the 
XMT, we observed up to seven times 
improvement in performance for the 
Suitor algorithm over the locally dom-
inant edge algorithm; it also enjoys 
better scalability. The benefits of 
dataflow design, exemplified by the 
Suitor algorithm, are evident from its 
superior performance across differ-
ent multithreaded platforms where 
synchronization was implemented 
using OpenMP locks because there is 
no explicit hardware support for syn-
chronization.19 Even with the use of 
such a heavyweight synchronization 
mechanism, the Suitor algorithm has 
superior performance relative to the 
queue-based locally dominant edge 
algorithm.

The key architectural feature 
enabling dataflow algorithms is hard-
ware support for fine-grained synchro-
nization. The work in alternating BFS-
based parallel matching algorithms is 
fine-grained, with a significant need 
for synchronization among threads 
executing concurrently. Although 
hardware-supported atomic memory 
operations were useful in some cases, 
the support for fine-grained synchro-
nization enabled the redesign of algo-
rithms that yielded substantial perfor-
mance improvements. The dataflow 
design overcomes load balancing, 
memory contention, and hotspotting 
problems. We observed that the design 
not only improves the overall perfor-
mance but also results in better scal-
ability of the dataflow algorithms.

LESSON 3: SEARCH STYLE
Augmentation-based algorithms search 
for augmenting paths and augment the 
current matching until such paths no 
longer exist. Augmenting paths can be 
constructed using either an alternat-
ing BFS or an alternating depth-first 

search (DFS), starting either from a sin-
gle vertex or from all unmatched ver-
tices. Figure 3 illustrates the construc-
tion of these paths using alternating 
BFS and alternating DFS from multiple 
source vertices. Alternating BFS and 

DFS means that we search for all neigh-
bors at every other level and then search 
for a matched edge in the other levels. 
Because starting from a single vertex 
has limited concurrency, we did not give 
it further consideration. The searches 
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The Suitor algorithm is two to seven times faster than the locally dominant (LD) algo-
rithm and scales better.
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FIGURE 3. Algorithm search style. (a) For the initial matching, two threads (T1 and T2) are 
used to augment a maximal matching. (b) Another approach uses alternating depth-first 
search (DFS) to spawn separate threads for each tree. (c) In contrast, alternating breadth-
first search (BFS)–based algorithms can use all threads to explore the neighborhood of 
vertices in the current level. They then synchronize the threads before proceeding to the 
next level of the BFS forest.
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from multiple source vertices have to be 
vertex-disjoint in order to find multiple 
augmenting paths. However, choosing 
between BFS and DFS approaches is a 
key decision that is influenced by archi-
tectural features and the characteristics 
of the graph we are matching.

In our work with these 
approaches,22 we found that DFS-
based approaches perform better on 

traditional multicore platforms, but 
BFS-based approaches are faster on 
the XMT, which has a slower clock and 
massive numbers of threads. Figure 4 
provides our results using 16 graphs 
on the Opteron and XMT. Although 
some BFS-based approaches (such as 
Hopcroft–Karp) have superior worst-
case time complexity, the DFS-based 
approaches emerged as practical 

winners across multiple studies con-
ducted on large sets of graphs. Hence, 
we found that the worst-case com-
putational complexity of matching 
algorithms is not a good predictor of 
parallel performance. Hannah Bast 
and colleagues have shown that O(m 
log n) is the expected time complexity 
for maximum cardinality matching 
in Erdos–Renyi random graphs with 
specified average degree.23 (See earlier 
work for further details.24)

In our work on bipartite maxi-
mum matching, we implemented 
five augmentation-based algorithms 
in conjunction with two initializa-
tion schemes on multicore and XMT 
platforms12 and the Push–Relabel 
algorithm with several heuristics on 
multicore platforms.25 We adapted 
several lessons from the extensive 
study in which Iain Duff and his col-
leagues compared serial algorithms.4 
We implemented a pure alternating 
BFS-based approach and two pure 
DFS-based approaches, one of which 
is Pothen–Fan. The remaining two 
schemes were hybrid breadth-first 
and depth-first approaches: parallel 
Hopcroft–Karp and parallel relaxed 
Hopcroft–Karp. The Hopcroft–Karp 
implementations involve the elabo-
rate construction of level graphs to 
track the multiple vertex-disjoint aug-
menting paths. In the first part, alter-
nating BFSs are initiated from multi-
ple unmatched vertices leading to the 
construction of a level graph ending at 
the discovery of the first unmatched 
vertex. Subsequently, DFSs are initi-
ated from the other end to find vertex-
disjoint augmenting paths in the level 
graph. The relaxed version of the 
algorithm comes from relaxing the 
restriction that the augmenting paths 
should be the shortest in the original 
Hopcroft–Karp algorithm.
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FIGURE 4. Performance profiles of the three best algorithms for maximum-cardinality 
matching: (a) AMD Opteron and (b) Cray XMT. The results are shown for 16 graphs. The 
fraction of input problems is plotted on the y-axis, and the runtime relative to the best 
performing algorithm (in log2 scale) is plotted on the x-axis. The Pothen–Fan algorithm per-
formed best on the Opteron, and an alternating BFS algorithm was the winner on the XMT. 
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Given the overhead required to con-
struct the level graphs, it is no surprise 
that the Hopcroft–Karp algorithms 
were less competitive. Because of its 
simplicity and efficient techniques, 
the parallel Pothen–Fan algorithm 
emerged as a clear winner for both 
serial and parallel approaches on mul-
ticore platforms with a modest number 
of cores. Our Pothen–Fan algorithm 
implementation used DFS to construct 
vertex-disjoint alternating-path search 
trees using the look-ahead technique—
that is, it performed one level of BFS 
at every alternate level to identify 
unmatched vertices. We further imple-
mented the fairness technique from the 
study by Iain Duff and his colleagues4 
that alternates the direction in which 
the adjacency lists of matched vertices 
are explored in every other iteration. 

In addition to multithreading, the 
hardware feature most relevant to 
optimal algorithms is the availability 
of a large shared address space for mul-
tithreaded platforms. The design and 
development of efficient graph algo-
rithms for distributed-memory plat-
forms is a difficult problem, especially 
for algorithms with complex and syn-
chronized search patterns. Graphs aris-
ing in modern data-intensive applica-
tions such as social networks and data 
mining are difficult to partition among 
the processors while reducing commu-
nications. Partitioning such graphs on 
distributed-memory platforms leads 
to communication bottlenecks, and 
on multithreaded platforms with non-
uniform memory access (NUMA) costs, 
it can lead to significant performance 
losses. The Cray XMT addresses this 
problem with massive multithread-
ing and by having several memory 
requests in flight during a clock cycle. 
However, on modern microprocessor 
architectures, it is necessary to develop 

novel schemes for latency tolerance 
beyond multithreading, and, when 
possible, programmers should care-
fully design data structures and mem-
ory layout schemes to exploit spatial 
and temporal localities.26

LESSON 4: SERIALIZATION 
AND SENSITIVITY
We now turn our attention to a 
nonaugmentation-based approach for 
maximum matching in bipartite 
graphs and the parallel Push–Relabel 
algorithm. This algorithm intuitively 
provides an estimate of the nearest 
unmatched vertex from a given vertex 
by maintaining distance labels. The 
distances provide a lower bound on the 
length of an alternating path from a 
given vertex to its nearest unmatched 
vertex. In our implementation,25 we 
adapted techniques from a serial imple-
mentation by Kamer Kaya and his col-
leagues27 to a parallel context. We 
compared the performance of this algo-
rithm with the Pothen–Fan algorithm 
on several multicore platforms. Some of 
the algorithmic ideas showcased by the 
Push–Relabel algorithm are also rele-
vant to other algorithms for weighted 
matching and network flow. Of partic-
ular relevance are the heuristics that 
determine the relabeling frequency, 

queuing of active vertices, and switch 
to serial computation.

A salient feature of most opti-
mal matching algorithms is the rapid 
decrease in available concurrent work 
as the algorithm progresses. Toward 
the end of execution, there is a need to 
process long augmenting paths (lon-
ger distances in the Push–Relabel algo-
rithm) that do not have enough parallel 
work, which reveals the need for fast 
serial performance. In the case of the 
Push–Relabel algorithm, we demon-
strate the benefit of switching to serial 
computation at different stages of the 
execution. Figure 5 shows the average 
runtime over 36 input graphs and the 
effect of switching to serial code toward 
the end of the algorithm. (Additional 
details are available in earlier work.25)

Fast serial performance is thus an 
important hardware feature that sig-
nificantly benefits the overall graph 
algorithm performance. Therefore, we 
believe that emerging heterogeneous 
architectures that combine different 
classes of compute units sharing an 
address space will be important for 
irregular (graph) algorithms. We aim to 
explore these architectures for match-
ing algorithms in the near future.

In a serial context, Duff and his col-
leagues observed that the runtimes of 
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FIGURE 5. Runtimes of the Push–Relabel algorithm for maximum-cardinality matching. 
We averaged 36 input graphs run on the AMD Opteron system. ST indicates the number 
of remaining unmatched vertices when the switch to serial computing was made. 
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matching algorithms varied signifi-
cantly when they randomly permuted 
the vertices and neighbor lists.4 This 
raised serious doubts about the util-
ity of parallel algorithms and imple-
mentations for maximum matching. 
Enforcing vertex ordering in a paral-
lel context leads to serialization and 
lost efficiency. We therefore studied 
the parallel sensitivity of different 
algorithms to prove their effective-
ness. We defined an algorithm’s par-
allel sensitivity as the ratio of the 
standard deviation of runtimes from 
several runs to the mean of runtimes 
multiplied by 100. Key observations 
from our work were that alternat-
ing DFS-based algorithms were more 
sensitive than alternating BFS-based 
algorithms (up to a 25 percent vari-
ance for DFS compared with up to a 5 
percent variance for BFS algorithms), 
and fairness that helped stabilize 
serial algorithms made parallel algo-
rithms more sensitive. 

The lessons from our work tran-
scend the matching problem 
itself and can be applied to sev-

eral other combinatorial problems and 
extended to distributed-memory plat-
forms. For instance, we have success-
fully adapted some of the ideas such as 
dataflow principles in designing effi-
cient vertex coloring of graphs.28 The 
key insight from our work highlights 
the need for the careful design of algo-
rithms influenced by architectural 
features and graph characteristics.

A topic of emerging importance 
that we did not discuss here is design-
ing algorithms for optimal energy and 
power consumption. This is a relatively 
new research topic for irregular algo-
rithms that will become important for 
modern low-power architectures.29 
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